Subband-based blind signal separation for noisy speech recognition

被引:36
作者
Park, HM
Jung, HY
Lee, TW
Lee, SY
机构
[1] Korea Adv Inst Sci & Technol, Dept Elect Engn, Yusong Gu, Taejon 305701, South Korea
[2] Korea Adv Inst Sci & Technol, Brain Sci Res Ctr, Yusong Gu, Taejon 305701, South Korea
[3] Salk Inst, Computat Neurobiol Lab, La Jolla, CA 92037 USA
[4] Univ Calif San Diego, Inst Neural Computat, San Diego, CA 92103 USA
关键词
D O I
10.1049/el:19991358
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A method for directly extracting clean speech features from noisy speech is proposed. This process is based on independent component analysis (ICA) and a new feature analysis technique for reducing the computational complexity of the frequency-domain ICA. For noisy speech signals recorded in real environments, this method yielded a considerable performance improvement.
引用
收藏
页码:2011 / 2012
页数:2
相关论文
共 4 条
  • [1] Amari S, 1996, ADV NEUR IN, V8, P757
  • [2] AN INFORMATION MAXIMIZATION APPROACH TO BLIND SEPARATION AND BLIND DECONVOLUTION
    BELL, AJ
    SEJNOWSKI, TJ
    [J]. NEURAL COMPUTATION, 1995, 7 (06) : 1129 - 1159
  • [3] LEE TW, 1997, P IEEE INT C NEUR NE, P2129
  • [4] SMARAGDIS P, 1997, THESIS MIT