Controlled production of aligned-nanotube bundles

被引:777
作者
Terrones, M
Grobert, N
Olivares, J
Zhang, JP
Terrones, H
Kordatos, K
Hsu, WK
Hare, JP
Townsend, PD
Prassides, K
Cheetham, AK
Kroto, HW
Walton, DRM
机构
[1] UNIV SUSSEX, SCH CHEM PHYS & ENVIRONM SCI, BRIGHTON BN1 9QJ, E SUSSEX, ENGLAND
[2] UNIV CALIF SANTA BARBARA, MAT RES LAB, SANTA BARBARA, CA 93106 USA
[3] Univ Nacl Autonoma Mexico, INST FIS, MEXICO CITY, DF, MEXICO
关键词
D O I
10.1038/40369
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Carbon nanotubes(1,2) might be usefully employed in nanometre-scale engineering and electronics. Electrical conductivity measurements on the bulk material(3,4) on individual multi-walled(5,6) and single-walled(7) nanotubes and on bundles of single-walled nanotubes(8,9) have revealed that they may behave as metallic, insulating or semiconducting nanowires, depending on the method of production-which controls the degree of graphitization, the helicity and the diameter. Measurements of Young's modulus show(10) that single nanotubes are stiffer than commercial carbon fibres. Methods commonly used to generate nanotubes-carbon-arc discharge techniques(1,2,4), catalytic pyrolysis of hydrocarbons(11,12) and condensed-phase electrolysis(13,14)-generally suffer from the drawbacks that polyhedral particles are also formed and that the dimensions of the nanotubes are highly variable. Here we describe a method for generating aligned carbon nanotubes by pyrolysis of 2-amino-4,6-dichloro-s-triazine over thin films of a cobalt catalyst patterned on a silica substrate by laser etching. The use of a patterned catalyst apparently encourages the formation of aligned nanotubes. The method offers control over length (up to about 50 mu m) and fairly uniform diameters (30-50 nm), as well as producing nanotubes in high yield, uncontaminated by polyhedral particles.
引用
收藏
页码:52 / 55
页数:4
相关论文
共 21 条
[1]   A FORMATION MECHANISM FOR CATALYTICALLY GROWN HELIX-SHAPED GRAPHITE NANOTUBES [J].
AMELINCKX, S ;
ZHANG, XB ;
BERNAERTS, D ;
ZHANG, XF ;
IVANOV, V ;
NAGY, JB .
SCIENCE, 1994, 265 (5172) :635-639
[2]   Single-electron transport in ropes of carbon nanotubes [J].
Bockrath, M ;
Cobden, DH ;
McEuen, PL ;
Chopra, NG ;
Zettl, A ;
Thess, A ;
Smalley, RE .
SCIENCE, 1997, 275 (5308) :1922-1925
[3]  
Chrisey D. B., 1994, PULSED LASER DEPOSIT
[4]   Probing electrical transport in nanomaterials: Conductivity of individual carbon nanotubes [J].
Dai, HJ ;
Wong, EW ;
Lieber, CM .
SCIENCE, 1996, 272 (5261) :523-526
[5]   A CARBON NANOTUBE FIELD-EMISSION ELECTRON SOURCE [J].
DEHEER, WA ;
CHATELAIN, A ;
UGARTE, D .
SCIENCE, 1995, 270 (5239) :1179-1180
[6]   Electrical conductivity of individual carbon nanotubes [J].
Ebbesen, TW ;
Lezec, HJ ;
Hiura, H ;
Bennett, JW ;
Ghaemi, HF ;
Thio, T .
NATURE, 1996, 382 (6586) :54-56
[7]   LARGE-SCALE SYNTHESIS OF CARBON NANOTUBES [J].
EBBESEN, TW ;
AJAYAN, PM .
NATURE, 1992, 358 (6383) :220-222
[8]   PYROLYTIC CARBON NANOTUBES FROM VAPOR-GROWN CARBON-FIBERS [J].
ENDO, M ;
TAKEUCHI, K ;
KOBORI, K ;
TAKAHASHI, K ;
KROTO, HW ;
SARKAR, A .
CARBON, 1995, 33 (07) :873-881
[9]  
HAUSSLEIN RW, 1995, 187 M EL SOC, P175
[10]   CONDENSED-PHASE NANOTUBES [J].
HSU, WK ;
HARE, JP ;
TERRONES, M ;
KROTO, HW ;
WALTON, DRM ;
HARRIS, PJF .
NATURE, 1995, 377 (6551) :687-687