Stable-isotope probing as a tool in microbial ecology

被引:819
作者
Radajewski, S
Ineson, P
Parekh, NR
Murrell, JC [1 ]
机构
[1] Univ Warwick, Dept Sci Biol, Coventry CV4 7AL, W Midlands, England
[2] Inst Terr Ecol, Merlewood Res Stn, Grange Sands LA11 6JU, Cumbria, England
关键词
D O I
10.1038/35001054
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Microorganisms are responsible for driving the biogeochemical cycling of elements on Earth. Despite their importance and vast diversity(1), the taxonomic identity of the microorganisms involved in any specific process has usually been confined to that small fraction of the microbiota that has been isolated and cultivated. The recent coupling of molecular biological methods with stable-isotope abundance in biomarkers has provided a cultivation-independent means of linking the identity of bacteria with their function in the environment(2,3). Here we show that C-13-DNA, produced during the growth of metabolically distinct microbial groups on a C-13-enriched carbon source, can be resolved from C-12- DNA by density-gradient centrifugation. DNA isolated from the target group of microorganisms can be characterized taxonomically and functionally by gene probing and sequence analysis. Application of this technique to investigate methanol-utilizing microorganisms in soil demonstrated the involvement of members of two phylogenetically distinct groups of eubacteria; the alpha-proteobacterial and Acidobacterium lineages. Stable-isotope probing thus offers a powerful new technique for identifying microorganisms that are actively involved in specific metabolic processes under conditions which approach those occurring in situ.
引用
收藏
页码:646 / 649
页数:4
相关论文
共 26 条
[1]   MOLECULAR AND MICROSCOPIC IDENTIFICATION OF SULFATE-REDUCING BACTERIA IN MULTISPECIES BIOFILMS [J].
AMANN, RI ;
STROMLEY, J ;
DEVEREUX, R ;
KEY, R ;
STAHL, DA .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1992, 58 (02) :614-623
[2]  
[Anonymous], 1981, PROKARYOTES
[3]  
Barns SM, 1999, APPL ENVIRON MICROB, V65, P1731
[4]   Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers [J].
Boschker, HTS ;
Nold, SC ;
Wellsbury, P ;
Bos, D ;
de Graaf, W ;
Pel, R ;
Parkes, RJ ;
Cappenberg, TE .
NATURE, 1998, 392 (6678) :801-805
[5]   Isolation of acidophilic methane-oxidizing bacteria from northern peat wetlands [J].
Dedysh, SN ;
Panikov, NS ;
Liesack, W ;
Grosskopf, R ;
Zhou, JZ ;
Tiedje, JM .
SCIENCE, 1998, 282 (5387) :281-284
[6]   ARCHAEA IN COASTAL MARINE ENVIRONMENTS [J].
DELONG, EF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (12) :5685-5689
[7]   Methanotrophic bacteria [J].
Hanson, RS ;
Hanson, TE .
MICROBIOLOGICAL REVIEWS, 1996, 60 (02) :439-+
[8]   Methane-consuming archaebacteria in marine sediments [J].
Hinrichs, KU ;
Hayes, JM ;
Sylva, SP ;
Brewer, PG ;
DeLong, EF .
NATURE, 1999, 398 (6730) :802-805
[9]   Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity [J].
Hugenholtz, P ;
Goebel, BM ;
Pace, NR .
JOURNAL OF BACTERIOLOGY, 1998, 180 (18) :4765-4774
[10]   ACIDOBACTERIUM-CAPSULATUM GEN-NOV, SP-NOV - AN ACIDOPHILIC CHEMOORGANOTROPHIC BACTERIUM CONTAINING MENAQUINONE FROM ACIDIC MINERAL ENVIRONMENT [J].
KISHIMOTO, N ;
KOSAKO, Y ;
TANO, T .
CURRENT MICROBIOLOGY, 1991, 22 (01) :1-7