The prokaryotic antecedents of the ubiquitin-signaling system and the early evolution of ubiquitin-like β-grasp domains

被引:111
作者
Iyer, Lakshminarayan M.
Burroughs, A. Maxwell
Aravind, L. [1 ]
机构
[1] Natl Lib Med, Natl Ctr Biotechnol Informat, NIH, Bethesda, MD 20894 USA
[2] Boston Univ, Bioinformat Program, Boston, MA 02215 USA
关键词
D O I
10.1186/gb-2006-7-7-r60
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Ubiquitin (Ub)-mediated signaling is one of the hallmarks of all eukaryotes. Prokaryotic homologs of Ub (ThiS and MoaD) and E1 ligases have been studied in relation to sulfur incorporation reactions in thiamine and molybdenum/tungsten cofactor biosynthesis. However, there is no evidence for entire protein modification systems with Ub-like proteins and deconjugation by deubiquitinating enzymes in prokaryotes. Hence, the evolutionary assembly of the eukaryotic Ub-signaling apparatus remains unclear. Results: We systematically analyzed prokaryotic Ub-related beta-grasp fold proteins using sensitive sequence profile searches and structural analysis. Consequently, we identified novel Ub-related proteins beyond the characterized ThiS, MoaD, TGS, and YukD domains. To understand their functional associations, we sought and recovered several conserved gene neighborhoods and domain architectures. These included novel associations involving diverse sulfur metabolism proteins, siderophore biosynthesis and the gene encoding the transfer mRNA binding protein SmpB, as well as domain fusions between Ub-like domains and PIN-domain related RNAses. Most strikingly, we found conserved gene neighborhoods in phylogenetically diverse bacteria combining genes for JAB domains (the primary de-ubiquitinating isopeptidases of the proteasomal complex), along with E1-like adenylating enzymes and different Ub-related proteins. Further sequence analysis of other conserved genes in these neighborhoods revealed several Ub-conjugating enzyme/E2-ligase related proteins. Genes for an Ub-like protein and a JAB domain peptidase were also found in the tail assembly gene cluster of certain caudate bacteriophages. Conclusion: These observations imply that members of the Ub family had already formed strong functional associations with E1-like proteins, UBC/E2-related proteins, and JAB peptidases in the bacteria. Several of these Ub-like proteins and the associated protein families are likely to function together in signaling systems just as in eukaryotes.
引用
收藏
页数:23
相关论文
共 94 条
[1]  
ADACHI J, 1992, MOLPHY PROGRAMS MOL
[2]  
Alberts B., 2002, Molecular Biology of The Cell, V4th
[3]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[4]   New connections in the prokaryotic toxin-antitoxin network: relationship with the eukaryotic nonsense-mediated RNA decay system [J].
Anantharaman, V ;
Aravind, L .
GENOME BIOLOGY, 2003, 4 (12)
[5]   Evolutionary history, structural features and biochemical diversity of the NlpC/P60 superfamily of enzymes [J].
Anantharaman, V ;
Aravind, L .
GENOME BIOLOGY, 2003, 4 (02)
[6]   MOSC domains: ancient, predicted sulfur-carrier domains, present in diverse metal-sulfur cluster biosynthesis proteins including Molybdenum cofactor sulfurases [J].
Anantharaman, V ;
Aravind, L .
FEMS MICROBIOLOGY LETTERS, 2002, 207 (01) :55-61
[7]   Peptide-N-glycanases and DNA repair proteins, Xp-C/Rad4, are, respectively, active and inactivated enzymes sharing a common transglutaminase fold [J].
Anantharaman, V ;
Koonin, EV ;
Aravind, L .
HUMAN MOLECULAR GENETICS, 2001, 10 (16) :1627-1630
[8]   Regulatory potential, phyletic distribution and evolution of ancient, intracellular small-molecule-binding domains [J].
Anantharaman, V ;
Koonin, EV ;
Aravind, L .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 307 (05) :1271-1292
[9]  
ANANTHARAMAN V, 2006, IN PRESS RNA BIOL
[10]   SCOP database in 2004: refinements integrate structure and sequence family data [J].
Andreeva, A ;
Howorth, D ;
Brenner, SE ;
Hubbard, TJP ;
Chothia, C ;
Murzin, AG .
NUCLEIC ACIDS RESEARCH, 2004, 32 :D226-D229