Biophysical properties of homomeric and heteromultimeric channels formed by cardiac connexins

被引:58
作者
Moreno, AP [1 ]
机构
[1] Indiana Univ, Sch Med, Krannert Inst Cardiol, Indianapolis, IN 46202 USA
关键词
heteromeric connexons; oligomerization; phosphorylation; gating; permeability;
D O I
10.1016/j.cardiores.2004.03.003
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Substantial advances have been made in characterizing the biophysical properties of channels formed exclusively by connexin isofonns expressed mainly in the heart, e.g., Cx43, Cx45 or Cx40. These properties include transjunctional and transmembrane voltage gating as well as their perm-selectivity, chemical gating and, at a single channel level, their multiple open states and changes in mode behavior. Nonetheless, these connexins are rarely expressed individually in a cell and the presence of functional channels constituted by distinct connexin isoforms is now suspected to be a norm. In fact, combinations of the connexins that form heteromeric channels have been described in some tissues, increasing the necessity to reinforce the research that leads to understanding the effects of these heteromeric interaction on the gating and conducting characteristics of the channels. Furthermore, protein-protein interaction studies will help to understand which connexin domains are involved in these interactions and how they affect the physiology of channels and their interaction with other biological and structural molecules in the cell. New information on the biophysical properties of heteromultimeric channels suggests that interaction between connexins and connexons is not as simple as once thought. Theoretically, changes in the coupling of homomeric connexons (Cx43) in the myocardium may not be significant enough to change the physiology of the heart or to incite arrhythmias, but when heteromeric channels are present, alteration in conductance, differential gating sensitivity to bio-gating molecules and changes in voltage sensitivity increase substantially the cell resources to modulate intercellular coupling, which may participate in the physiology and/or pathology of the cardiovascular tissues. (C) 2004 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:276 / 286
页数:11
相关论文
共 77 条
[1]   The carboxyl terminal domain regulates the unitary conductance and voltage dependence of connexin40 gap junction channels [J].
Anumonwo, JMB ;
Taffet, SM ;
Gu, H ;
Chanson, M ;
Moreno, AP ;
Delmar, M .
CIRCULATION RESEARCH, 2001, 88 (07) :666-673
[2]   Voltage gating of Cx43 gap junction channels involves fast and slow current transitions [J].
Banach, K ;
Weingart, R .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 2000, 439 (03) :248-250
[3]   Species-specific voltage-gating properties of connexin-45 junctions expressed in Xenopus oocytes [J].
Barrio, LC ;
Capel, J ;
Jarillo, JA ;
Castro, C ;
Revilla, A .
BIOPHYSICAL JOURNAL, 1997, 73 (02) :757-769
[4]   HEPTANOL-INDUCED DECREASE IN CARDIAC GAP JUNCTIONAL CONDUCTANCE IS MEDIATED BY A DECREASE IN THE FLUIDITY OF MEMBRANOUS CHOLESTEROL-RICH DOMAINS [J].
BASTIAANSE, EML ;
JONGSMA, HJ ;
VANDERLAARSE, A ;
TAKENSKWAK, BR .
JOURNAL OF MEMBRANE BIOLOGY, 1993, 136 (02) :135-145
[5]   Monovalent cation permeation through the connexin40 gap junction channel - Cs, Rb, K, Na, Li, TEA, TMA, TBA, and effects of anions Br, Cl, F, acetate, aspartate, glutamate, and NO3 [J].
Beblo, DA ;
Veenstra, RD .
JOURNAL OF GENERAL PHYSIOLOGY, 1997, 109 (04) :509-522
[6]  
Bennett M V, 1992, Semin Cell Biol, V3, P29
[7]   Direct high affinity modulation of connexin channel activity by cyclic nucleotides [J].
Bevans, CG ;
Harris, AL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (06) :3720-3725
[8]   Pannexins, a family of gap junction proteins expressed in brain [J].
Bruzzone, R ;
Hormuzdi, SG ;
Barbe, MT ;
Herb, A ;
Monyer, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (23) :13644-13649
[9]   BIOPHYSICAL PROPERTIES OF GAP JUNCTION CHANNELS FORMED BY MOUSE CONNEXIN40 IN INDUCED PAIRS OF TRANSFECTED HUMAN HELA-CELLS [J].
BUKAUSKAS, FF ;
ELFGANG, C ;
WILLECKE, K ;
WEINGART, R .
BIOPHYSICAL JOURNAL, 1995, 68 (06) :2289-2298
[10]   Conductance and permeability of the residual state of connexin43 gap junction channels [J].
Bukauskas, FF ;
Bukauskiene, A ;
Verselis, VK .
JOURNAL OF GENERAL PHYSIOLOGY, 2002, 119 (02) :171-185