Hydrogen spillover in the context of hydrogen storage using solid-state materials

被引:137
作者
Cheng, Hansong [1 ]
Chen, Liang [2 ]
Cooper, Alan C. [1 ]
Sha, Xianwei [1 ]
Pez, Guido P. [1 ]
机构
[1] Air Prod & Chem Inc, Allentown, PA 18195 USA
[2] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Zhejiang, Peoples R China
关键词
D O I
10.1039/b807618a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hydrogen spillover has emerged as a possible technique for achieving high-density hydrogen storage at near-ambient conditions in lightweight, solid-state materials. We present a brief review of our combined theoretical and experimental studies on hydrogen spillover mechanisms in solid-state materials where, for the first time, the complete mechanisms that dictate hydrogen spillover processes in transition metal oxides and nanostructured graphitic carbon-based materials have been revealed. The spillover process is broken into three primary steps: (1) dissociative chemisorption of gaseous H(2) on a transition metal catalyst; (2) migration of H atoms from the catalyst to the substrate and (3) diffusion of H atoms on substrate surfaces and/or in the bulk materials. In our theoretical studies, the platinum catalyst is modeled with a small Pt cluster and the catalytic activity of the cluster is examined at full H atom saturation to account for the essentially constant, high H(2) pressures used in experimental studies of hydrogen spillover. Subsequently, the energetic profiles associated with H atom migrations from the catalyst to the substrates and H atom diffusion in the substrates are mapped out by calculating the minimum energy pathways. It is observed that the spillover mechanisms for the transition metal oxides and graphitic carbon-based materials are very different. Hydrogen spillover in the transition metal oxides is moderated by massive, nascent hydrogen bonding networks in the crystalline lattice, while H atom diffusion on the nanostructured graphitic carbon materials is governed mostly by physisorption of H atoms. The effects of carbon material surface curvature on the hydrogen spillover as well as on hydrogen desorption dynamics are also discussed. The proposed hydrogen spillover mechanism in carbon-based materials is consistent with our experimental observations of the solid-state catalytic hydrogenation/dehydrogenation of coronene.
引用
收藏
页码:338 / 354
页数:17
相关论文
共 135 条
[1]  
*ACC SOFTW INC, 2005, DMOL3
[2]   Hydrogen desorption and adsorption measurements on graphite nanofibers [J].
Ahn, CC ;
Ye, Y ;
Ratnakumar, BV ;
Witham, C ;
Bowman, RC ;
Fultz, B .
APPLIED PHYSICS LETTERS, 1998, 73 (23) :3378-3380
[3]   Production of hydrogen from chemical hydrides via hydrolysis with steam [J].
Aiello, R ;
Sharp, JH ;
Matthews, MA .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1999, 24 (12) :1123-1130
[4]   ALLOYS FOR HYDROGEN STORAGE IN NICKEL-HYDROGEN AND NICKEL METAL HYDRIDE BATTERIES [J].
ANANI, A ;
VISINTIN, A ;
PETROV, K ;
SRINIVASAN, S ;
REILLY, JJ ;
JOHNSON, JR ;
SCHWARZ, RB ;
DESCH, PB .
JOURNAL OF POWER SOURCES, 1994, 47 (03) :261-275
[5]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[6]  
Bader R. F. W., 1994, Atoms in Molecules: A Quantum Theory
[7]   Carbon nanotubes - the route toward applications [J].
Baughman, RH ;
Zakhidov, AA ;
de Heer, WA .
SCIENCE, 2002, 297 (5582) :787-792
[8]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[9]   Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials [J].
Bogdanovic, B ;
Schwickardi, M .
JOURNAL OF ALLOYS AND COMPOUNDS, 1997, 253 (1-2) :1-9
[10]   Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials [J].
Bogdanovic, B ;
Brand, RA ;
Marjanovic, A ;
Schwickardi, M ;
Tölle, J .
JOURNAL OF ALLOYS AND COMPOUNDS, 2000, 302 (1-2) :36-58