Phase transition in a model with non-compact symmetry on Bethe lattice and the replica limit

被引:12
作者
Gruzberg, IA [1 ]
Mirlin, AD [1 ]
机构
[1] UNIV KARLSRUHE,INST THEORIE KONDENSIERTEN MUTERIE,D-76128 KARLSRUHE,GERMANY
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1996年 / 29卷 / 17期
关键词
D O I
10.1088/0305-4470/29/17/010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We solve the O(n, 1) nonlinear vector model on the Bethe lattice and show that it exhibits a transition from ordered to disordered state for 0 less than or equal to n < 1. If the replica limit n --> 0 is taken carefully, the model is shown to reduce to the corresponding supersymmetric model. The latter was introduced by Zirnbauer as a toy model for the Anderson localization transition. We argue thus that the non-compact replica models describe correctly the Anderson transition features. This should be contrasted to their failure in the case of the level correlation problem.
引用
收藏
页码:5333 / 5345
页数:13
相关论文
共 22 条
[1]  
Altshuler B. L., 1991, MESOSCOPIC PHENOMENA
[2]   SYMMETRY-BREAKING IN THE NON-COMPACT SIGMA MODEL [J].
AMIT, DJ ;
DAVIS, AC .
NUCLEAR PHYSICS B, 1983, 225 (02) :221-232
[3]  
Berezin F.A., 1987, MATH PHYS APPL MATH, V9
[4]   A STUDY OF THE NON-COMPACT NON-LINEAR SIGMA-MODEL - A SEARCH FOR DYNAMICAL REALIZATIONS OF NON-COMPACT SYMMETRIES [J].
COHEN, Y ;
RABINOVICI, E .
PHYSICS LETTERS B, 1983, 124 (05) :371-378
[5]   QUANTUM-THEORY OF COMPACT AND NON-COMPACT SIGMA-MODELS [J].
DAVIS, AC ;
MACFARLANE, AJ ;
VANHOLTEN, JW .
NUCLEAR PHYSICS B, 1984, 232 (03) :473-510
[6]  
DUPRE T, 1995, CONDMAT9512128
[7]   THEORY OF SPIN GLASSES [J].
EDWARDS, SF ;
ANDERSON, PW .
JOURNAL OF PHYSICS F-METAL PHYSICS, 1975, 5 (05) :965-974
[8]   SUPERSYMMETRY AND THEORY OF DISORDERED METALS [J].
EFETOV, KB .
ADVANCES IN PHYSICS, 1983, 32 (01) :53-127
[9]  
EFETOV KB, 1987, ZH EKSP TEOR FIZ, V65, P360
[10]  
EFETOV KB, 1985, ZH EKSP TEOR FIZ, V61, P606