Distributed sequestration and release of PAHs in weathered sediment: The role of sediment structure and organic carbon properties

被引:143
作者
Rockne, KJ
Shor, LM
Young, LY
Taghon, GL
Kosson, DS [1 ]
机构
[1] Vanderbilt Univ, Dept Civil & Environm Engn, Nashville, TN 37235 USA
[2] Univ Illinois, Dept Civil & Mat Engn, Chicago, IL 60607 USA
[3] Rutgers State Univ, Biotechnol Ctr Agr & Environm, New Brunswick, NJ 08901 USA
[4] Rutgers State Univ, Inst Marine & Coastal Sci, New Brunswick, NJ 08901 USA
关键词
D O I
10.1021/es015652h
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Polycyclic aromatic hydrocarbon (PAH) contaminated sediments from Piles Creek (PC) and Newtown Creek (NC) in the NY/NJ Harbor estuary were separated into size fractions and further separated into low (<1.7 g cm(-3)) and high (> 1.7 g cm(-3)) density fractions. The fractionated sediments were characterized for carbon content, pore structure, surface area, and PAH concentration. Most PAHs (50-80%) in both sediments were associated with the low-density fraction, which represents only 3-15% of total sediment mass, at levels greater than expected based on equilibrium partitioning. PC low-density sediment had 10 times greater organic carbon-normalized equilibrium partitioning coefficients (K,,) than the other size fractions and whole sediment. Characterization of the sediment organic matter suggested that the preferential sequestration observed in PC sediment was not correlated with soot carbon but was likely due to the presence of detrital plant debris, an important food source for benthic animals. Fractional PAH desorption from whole PC sediment was significantly higher than from NC sediment after 3 months. For both sediments, a smaller percentage of the total PAHs was desorbed from the low-density fraction. However, because PAH concentrations were greatly elevated in these fractions, more PAH mass was desorbed than from the corresponding bulk and high-density fractions. These results demonstrate that PAHs are preferentially sequestered in a separable, low-density fraction at levels not predictable by equilibrium partitioning theory. Further, the low-density fraction apparently controls whole-sediment PAH release. Although plant debris appears to be an important sorbent for PAHs, this material may readily release PAHs into the aqueous phase.
引用
收藏
页码:2636 / 2644
页数:9
相关论文
共 50 条
[1]   A principal-component and least-squares method for allocating polycyclic aromatic hydrocarbons in sediment to multiple sources [J].
Burns, WA ;
Mankiewicz, PJ ;
Bence, AE ;
Page, DS ;
Parker, KR .
ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 1997, 16 (06) :1119-1131
[2]   APPLICATION OF A PERMEANT POLYMER DIFFUSIONAL MODEL TO THE DESORPTION OF POLYCHLORINATED-BIPHENYLS FROM HUDSON RIVER SEDIMENTS [J].
CARROLL, KM ;
HARKNESS, MR ;
BRACCO, AA ;
BALCARCEL, RR .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1994, 28 (02) :253-258
[3]  
Cornelissen G, 1997, ENVIRON TOXICOL CHEM, V16, P1351, DOI [10.1002/etc.5620160703, 10.1897/1551-5028(1997)016&lt
[4]  
1351:DKOCPA&gt
[5]  
2.3.CO
[6]  
2]
[7]   Mechanism of slow desorption of organic compounds from sediments: A study using model sorbents [J].
Cornelissen, G ;
Van Noort, PCM ;
Govers, HAJ .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1998, 32 (20) :3124-3131
[8]   Rapidly desorbing fractions of PAHs in contaminated sediments as a predictor of the extent of bioremediation [J].
Cornelissen, G ;
Rigterink, H ;
Ferdinandy, MMA ;
Van Noort, PCM .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1998, 32 (07) :966-970
[9]   Adsorption onto aerosol soot carbon dominates gas-particle partitioning of polycyclic aromatic hydrocarbons [J].
Dachs, J ;
Eisenreich, SJ .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2000, 34 (17) :3690-3697
[10]   Investigation of mechanisms contributing to slow desorption of hydrophobic organic compounds from mineral solids [J].
Farrell, J ;
Grassian, D ;
Jones, M .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1999, 33 (08) :1237-1243