Thermal pressurization and onset of melting in fault zones

被引:112
作者
Rempel, Alan W. [1 ]
Rice, James R.
机构
[1] Univ Oregon, Dept Geol Sci, Eugene, OR 97403 USA
[2] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA
[3] Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA
关键词
D O I
10.1029/2006JB004314
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
[1] We examine how frictional heating drives the evolution of temperature, strength, and fracture energy during earthquake slip. For small slip distances, heat and pore fluid are unable to escape the shearing fault core, and the behavior is well approximated by simple analytical models that neglect any transport. Following large slip distances, the finite width of the shear zone is small compared to the thicknesses of the thermal and hydrological boundary layers, and the fault behavior approaches that predicted for the idealized case of slip on a plane. To evaluate the range in which the predictions of these two sets of approximations are valid, we develop a model that describes how frictional dissipation within a finite shear zone drives heat and mass transport through the surrounding static gouge. With realistic parameter values and slips greater than a few centimeters, the subsequent evolution of strength and fracture energy are approximated well by the planar slip model. However, the temperature evolution is much more sensitive to the finite shear zone thickness, and the ultimate temperature rise tends to be intermediate between that predicted for the two simplified cases. We explore the range of conditions necessary for melting to begin and focus in particular on the potential role of fault zone damage in facilitating fluid transport and promoting larger temperature increases. We discuss how the apparent scarcity of exhumed pseudotachylytes places constraints on some of the more uncertain fault zone parameters.
引用
收藏
页数:18
相关论文
共 43 条
[1]   Can observations of earthquake scaling constrain slip weakening? [J].
Abercrombie, RE ;
Rice, JR .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2005, 162 (02) :406-424
[2]   A fault constitutive relation accounting for thermal pressurization of pore fluid [J].
Andrews, DJ .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2002, 107 (B12)
[3]  
[Anonymous], EOS T AGU S
[4]  
[Anonymous], WATER COMPREHENSIVE, DOI [10.1007/978-1-4684-8334-5_13, DOI 10.1007/978-1-4684-8334-5_13]
[5]   THE SURFACE TEMPERATURE OF SLIDING SOLIDS [J].
BOWDEN, FP ;
THOMAS, PH .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1954, 223 (1152) :29-+
[6]  
BURNHAM CW, 1969, 132 GEOL SOC AM
[7]   Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California [J].
Chester, FM ;
Chester, JS .
TECTONOPHYSICS, 1998, 295 (1-2) :199-221
[8]  
Chester FM, 2004, MARG THEOR EXP EARTH, P223
[9]   Fracture surface energy of the Punchbowl fault, San Andreas system [J].
Chester, JS ;
Chester, FM ;
Kronenberg, AK .
NATURE, 2005, 437 (7055) :133-136
[10]  
CHESTER JS, 2003, 2003 S CAL EARTHQ CE