Feedback stabilization of unstable propagating waves

被引:59
作者
Mihaliuk, E [1 ]
Sakurai, T
Chirila, F
Showalter, K
机构
[1] W Virginia Univ, Dept Chem, Morgantown, WV 26506 USA
[2] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany
来源
PHYSICAL REVIEW E | 2002年 / 65卷 / 06期
关键词
D O I
10.1103/PhysRevE.65.065602
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Propagating wave segments are stabilized to a constant size and shape by applying negative feedback from the measured wave area to the excitability of the medium. The locus of steady-state wave size as a function of excitability defines the perturbation threshold for the initiation of spiral waves. This locus also defines the excitability boundary for spiral wave behavior in active media.
引用
收藏
页数:4
相关论文
共 21 条
[1]  
BAR M, 1993, PHYS REV E, V48, pR1635
[2]   PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM [J].
CROSS, MC ;
HOHENBERG, PC .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :851-1112
[3]  
Davydov V. A., 1991, Soviet Physics - Uspekhi, V34, P665, DOI 10.1070/PU1991v034n08ABEH002462
[4]   Nonlinear chemical dynamics: Oscillations, patterns, and chaos [J].
Epstein, IR ;
Showalter, K .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (31) :13132-13147
[5]  
FIELD RJ, 1974, J CHEM PHYS, V60, P1877, DOI 10.1063/1.1681288
[6]   FEEDBACK-CONTROLLED DYNAMICS OF MEANDERING SPIRAL WAVES [J].
GRILL, S ;
ZYKOV, VS ;
MULLER, SC .
PHYSICAL REVIEW LETTERS, 1995, 75 (18) :3368-3371
[7]   Theory of spiral wave dynamics in weakly excitable media: Asymptotic reduction to a kinematic model and applications [J].
Hakim, V ;
Karma, A .
PHYSICAL REVIEW E, 1999, 60 (05) :5073-5105
[8]  
Kapral R., 1995, CHEM WAVES PATTERNS
[9]   UNIVERSAL LIMIT OF SPIRAL WAVE-PROPAGATION IN EXCITABLE MEDIA [J].
KARMA, A .
PHYSICAL REVIEW LETTERS, 1991, 66 (17) :2274-2277
[10]   BIFURCATION TO TRAVELING SPOTS IN REACTION-DIFFUSION SYSTEMS [J].
KRISCHER, K ;
MIKHAILOV, A .
PHYSICAL REVIEW LETTERS, 1994, 73 (23) :3165-3168