Tsunami travel time prediction using neural networks

被引:23
作者
Barman, Rahul [1 ]
Kumar, B. Prasad
Pandey, P. C.
Dube, S. K.
机构
[1] Indian Inst Technol, Dept Ocean Engn & Naval Architecture, Kharagpur 721302, W Bengal, India
[2] Indian Inst Technol, Ctr Oceans Rivers Atmosphere & Land Sci, Kharagpur 721302, W Bengal, India
关键词
D O I
10.1029/2006GL026688
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The present work reports the development of a nonlinear technique based on artificial neural network (ANN) for prediction of tsunami travel time in the Indian Ocean. The expected times of arrival (ETA) computation involved 250 representative coastal stations encompassing 35 countries. A travel time model is developed using ANN approach. The ANN model uses non-linear regression where a Multi-layer Perceptron (MLP) is used to tackle the non-linearity in the computed ETA. The back-propagation feed forward type network is used for training the system using the resilient back-propagation algorithm. The model demonstrates a high degree of correlation, proving its robustness in development of a real-time tsunami warning system for Indian Ocean.
引用
收藏
页数:6
相关论文
共 16 条
[1]  
[Anonymous], 1998, NEURAL NETWORKS COMP
[2]  
BISHOP CM, 1995, NEURAL NETWORKS PATT, P364
[3]   HOW NEURAL NETWORKS LEARN FROM EXPERIENCE [J].
HINTON, GE .
SCIENTIFIC AMERICAN, 1992, 267 (03) :145-151
[4]   Tsunami travel time computation and skill assessment for the 26 December 2004 event in the Indian Ocean [J].
Kumar, B. Prasad ;
Kumar, R. Rajesh ;
Dube, S. K. ;
Murty, Tad ;
Gangopadhyay, Avijit ;
Chaudhuri, Ayan ;
Rao, A. D. .
COASTAL ENGINEERING JOURNAL, 2006, 48 (02) :147-166
[5]  
KUMAR BP, 2005, TSUNAMI TRAVEL TIME, P1
[6]   Hybrid coupled modeling of the tropical Pacific using neural networks [J].
Li, SY ;
Hsieh, WW ;
Wu, AM .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2005, 110 (C9) :1-12
[7]  
More J. J., 1978, Proceedings of the Biennial Conference on numerical analysis, P105
[8]  
NAVONE HD, 1994, CLIM DYNAM, V10, P305, DOI 10.1007/BF00228029
[9]  
REIDMILLER M, 1993, IEEE INT C NEUR NETW
[10]  
Silverman D, 2000, J APPL METEOROL, V39, P57, DOI [10.1175/1520-0450(2000)039<0057:ANNALR>2.0.CO