A neurotrophin signaling cascade coordinates sympathetic neuron development through differential control of TrkA trafficking and retrograde signaling

被引:286
作者
Kuruvilla, R
Zweifel, LS
Glebova, NO
Lonze, BE
Valdez, G
Ye, HH
Ginty, DD [1 ]
机构
[1] Johns Hopkins Univ, Sch Med, Howard Hughes Med Inst, Dept Neurosci, Baltimore, MD 21205 USA
[2] SUNY Stony Brook, Dept Neurobiol & Behav, Stony Brook, NY 11794 USA
关键词
D O I
10.1016/j.cell.2004.06.021
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A fundamental question in developmental biology is how a limited number of growth factors and their cognate receptors coordinate the formation of tissues and organs endowed with enormous morphological complexity. We report that the related neurotrophins NGF and NT-3, acting through a common receptor, TrkA, are required for sequential stages of sympathetic axon growth and, thus, innervation of target fields. Yet, while NGF supports TrkA internalization and retrograde signaling from distal axons to cell bodies to promote neuronal survival, NT-3 cannot. Interestingly, final target-derived NGF promotes expression of the p75 neurotrophin receptor, in turn causing a reduction in the sensitivity of axons to intermediate target-derived NT-3. We propose that a hierarchical neurotrophin signaling cascade coordinates sequential stages of sympathetic axon growth, innervation of targets, and survival in a manner dependent on the differential control of TrkA internalization, trafficking, and retrograde axonal signaling.
引用
收藏
页码:243 / 255
页数:13
相关论文
共 46 条
[1]   The p75 neurotrophin receptor mediates neuronal apoptosis and is essential for naturally occurring sympathetic neuron death [J].
Bamji, SX ;
Majdan, M ;
Pozniak, CD ;
Belliveau, DJ ;
Aloyz, R ;
Kohn, J ;
Causing, CG ;
Miller, FD .
JOURNAL OF CELL BIOLOGY, 1998, 140 (04) :911-923
[2]   NGF and neurotrophin-3 both activate TrkA on sympathetic neurons but differentially regulate survival and neuritogenesis [J].
Belliveau, DJ ;
Krivko, I ;
Kohn, J ;
Lachance, C ;
Pozniak, C ;
Rusakov, D ;
Kaplan, D ;
Miller, FD .
JOURNAL OF CELL BIOLOGY, 1997, 136 (02) :375-388
[3]   DIFFERENTIAL EXPRESSION OF NERVE GROWTH-FACTOR RECEPTORS LEADS TO ALTERED BINDING-AFFINITY AND NEUROTROPHIN RESPONSIVENESS [J].
BENEDETTI, M ;
LEVI, A ;
CHAO, MV .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (16) :7859-7863
[4]   Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system [J].
Bibel, M ;
Barde, YA .
GENES & DEVELOPMENT, 2000, 14 (23) :2919-2937
[5]   The p75 neurotrophin receptor influences NT-3 responsiveness of sympathetic neurons in vivo [J].
Brennan, C ;
Rivas-Plata, K ;
Landis, SC .
NATURE NEUROSCIENCE, 1999, 2 (08) :699-705
[6]   Axonal protein synthesis provides a mechanism for localized regulation at an intermediate target [J].
Brittis, PA ;
Lu, Q ;
Flanagan, JG .
CELL, 2002, 110 (02) :223-235
[7]   AN ALTERNATIVELY SPLICED FORM OF THE NERVE GROWTH-FACTOR RECEPTOR TRKA CONFERS AN ENHANCED RESPONSE TO NEUROTROPHIN-3 [J].
CLARY, DO ;
REICHARDT, LF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (23) :11133-11137
[8]   MICE LACKING NERVE GROWTH-FACTOR DISPLAY PERINATAL LOSS OF SENSORY AND SYMPATHETIC NEURONS YET DEVELOP BASAL FOREBRAIN CHOLINERGIC NEURONS [J].
CROWLEY, C ;
SPENCER, SD ;
NISHIMURA, MC ;
CHEN, KS ;
PITTSMEEK, S ;
ARMANINI, MP ;
LING, LH ;
MCMAHON, SB ;
SHELTON, DL ;
LEVINSON, AD ;
PHILLIPS, HS .
CELL, 1994, 76 (06) :1001-1011
[9]   DEVELOPMENTAL-CHANGES IN NT3 SIGNALING VIA TRKA AND TRKB IN EMBRYONIC NEURONS [J].
DAVIES, AM ;
MINICHIELLO, L ;
KLEIN, R .
EMBO JOURNAL, 1995, 14 (18) :4482-4489
[10]   NGF signaling in sensory neurons: Evidence that early endosomes carry NGF retrograde signals [J].
Delcroix, JD ;
Valletta, JS ;
Wu, CB ;
Hunt, SJ ;
Kowal, AS ;
Mobley, WC .
NEURON, 2003, 39 (01) :69-84