Control of high-dimensional chaos in systems with symmetry

被引:13
作者
Locher, M
Hunt, ER
机构
[1] Department of Physics and Astronomy, Condensed Matter and Surface Sciences Program, Ohio University, Athens, OH
关键词
D O I
10.1103/PhysRevLett.79.63
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate the successful control of a periodic orbit associated with two unstable manifolds in a system comprised of two coupled diode resonators. It is shown that due to symmetries generic to spatially extended systems a one parameter control is not possible. A novel method of determining the local Liapunov exponents utilizing orthogonal control as well as geometric information is presented.
引用
收藏
页码:63 / 66
页数:4
相关论文
共 20 条
[1]   CONTROLLING CHAOS IN HIGH DIMENSIONAL SYSTEMS [J].
AUERBACH, D ;
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1992, 69 (24) :3479-3482
[2]   COUPLED NONLINEAR OSCILLATORS AND THE SYMMETRIES OF ANIMAL GAITS [J].
COLLINS, JJ ;
STEWART, IN .
JOURNAL OF NONLINEAR SCIENCE, 1993, 3 (03) :349-392
[3]   HEXAPODAL GAITS AND COUPLED NONLINEAR OSCILLATOR MODELS [J].
COLLINS, JJ ;
STEWART, I .
BIOLOGICAL CYBERNETICS, 1993, 68 (04) :287-298
[4]  
COLLINS JJ, 1994, BIOL CYBERN, V71, P95, DOI 10.1007/BF00197312
[5]  
Davis P J, 1994, CIRCULANT MATRICES
[6]   Controlling chaos in high dimensions: Theory and experiment [J].
Ding, MZ ;
Yang, WM ;
In, V ;
Ditto, WL ;
Spano, ML ;
Gluckman, B .
PHYSICAL REVIEW E, 1996, 53 (05) :4334-4344
[7]   STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS [J].
FUJISAKA, H ;
YAMADA, T .
PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01) :32-47
[8]  
GRINDROD P, 1991, PATTERNS WAVES
[9]  
HOGG T, 1984, PHYS REV A, V29, P29
[10]   STABILIZING HIGH-PERIOD ORBITS IN A CHAOTIC SYSTEM - THE DIODE RESONATOR [J].
HUNT, ER .
PHYSICAL REVIEW LETTERS, 1991, 67 (15) :1953-1955