Spectral factorization of Laurent polynomials

被引:57
作者
Goodman, TNT
Micchelli, CA
Rodriguez, G
Seatzu, S
机构
[1] UNIV DUNDEE, DEPT MATH SCI, DUNDEE DD1 4H, SCOTLAND
[2] IBM CORP, THOMAS J WATSON RES CTR, DIV RES, YORKTOWN HTS, NY 10598 USA
[3] UNIV CAGLIARI, DEPT MATH, I-09123 CAGLIARI, ITALY
基金
英国工程与自然科学研究理事会;
关键词
spectral factorization; Toeplitz matrices; Euler-Frobenius polynomials; Daubechies wavelets;
D O I
10.1023/A:1018915407202
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyse the performance of five numerical methods for factoring a Laurent polynomial, which is positive on the unit circle, as the modulus squared of a real algebraic polynomial. It is found that there is a wide disparity between the methods, and all but one of the methods are significantly influenced by the variation in magnitude of the coefficients of the Laurent polynomial, by the closeness of the zeros of this polynomial to the unit circle, and by the spacing of these zeros.
引用
收藏
页码:429 / 454
页数:26
相关论文
共 21 条
[1]  
AMARATUNGA K, 1995, WAVELET DIGEST, V4
[2]  
[Anonymous], 1959, ILLINOIS J MATH
[3]  
Bauer F.L., 1956, Sitzungsberichte der Bayerischen Akademie der Wissenschaften, P163
[4]  
Bauer F.L., 1955, Arch. Elektr. Ubertragung, V9, P285
[5]  
Bogert B.P., 1963, TIME SERIES ANAL, P209
[6]  
CAVARETTA AS, 1991, MEM AM MATH SOC, V93, P1
[7]   USING THE REFINEMENT EQUATION FOR EVALUATING INTEGRALS OF WAVELETS [J].
DAHMEN, W ;
MICCHELLI, CA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (02) :507-537
[8]  
Daubechies I., 1992, CBMS NSF REGIONAL C, V61
[9]  
DEBOOR C, 1978, APPLIED MATH SCI, V27
[10]  
Golub G, 2013, Matrix Computations, V4th