Auxin-regulated cell polarity: an inside job?

被引:52
作者
Kramer, Eric M. [1 ,2 ]
机构
[1] Bard Coll Simons Rock, Dept Phys, Great Barrington, MA 01230 USA
[2] Univ Nottingham, Ctr Plant Integrat Biol, Nottingham NG7 2RD, England
基金
美国国家科学基金会;
关键词
PATTERN-FORMATION; PLASMA-MEMBRANE; BINDING PROTEIN; VASCULAR DIFFERENTIATION; PRIMORDIUM DEVELOPMENT; PLANT DEVELOPMENT; ARABIDOPSIS; TRANSPORT; MODEL; CANALIZATION;
D O I
10.1016/j.tplants.2009.02.005
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Auxin is now known to be a key regulator of polar events in plant cells. The mechanism by which auxin conveys a polar signal to the cell is unknown, but one well-known hypothesis is that the auxin flux across the plasma membrane regulates vesicle trafficking. This hypothesis remains controversial because of its reliance on an as-yet-undiscovered membrane flux sensor. In this article I suggest instead that the polar signal is the auxin gradient within the cell cytoplasm. A computer model of vascular development is presented that demonstrates the plausibility of this scenario. The auxin-binding protein ABP1 might be the receptor for the auxin gradient.
引用
收藏
页码:242 / 247
页数:6
相关论文
共 62 条
[1]   Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis [J].
Aloni, R ;
Schwalm, K ;
Langhans, M ;
Ullrich, CI .
PLANTA, 2003, 216 (05) :841-853
[2]   Indole acetic acid distribution coincides with vascular differentiation pattern during Arabidopsis leaf ontogeny [J].
Avsian-Kretchmer, O ;
Cheng, JC ;
Chen, LJ ;
Moctezuma, E ;
Sung, ZR .
PLANT PHYSIOLOGY, 2002, 130 (01) :199-209
[3]   Auxin influx carriers stabilize phyllotactic patterning [J].
Bainbridge, Katherine ;
Guyomarc'h, Soazig ;
Bayer, Emmanuelle ;
Swarup, Ranjan ;
Bennett, Malcolm ;
Mandel, Therese ;
Kuhlemeier, Cris .
GENES & DEVELOPMENT, 2008, 22 (06) :810-823
[4]   Integration of transport-based models for phyllotaxis and midvein formation [J].
Bayer, Emmanuelle M. ;
Smith, Richard S. ;
Mandel, Therese ;
Nakayama, Naomi ;
Sauer, Michael ;
Prusinkiewicz, Przemyslaw ;
Kuhlemeier, Cris .
GENES & DEVELOPMENT, 2009, 23 (03) :373-384
[5]   Local, efflux-dependent auxin gradients as a common module for plant organ formation [J].
Benková, E ;
Michniewicz, M ;
Sauer, M ;
Teichmann, T ;
Seifertová, D ;
Jürgens, G ;
Friml, J .
CELL, 2003, 115 (05) :591-602
[6]   Conditional Repression of AUXIN BINDING PROTEIN1 Reveals That It Coordinates Cell Division and Cell Expansion during Postembryonic Shoot Development in Arabidopsis and Tobacco [J].
Braun, Nils ;
Wyrzykowska, Joanna ;
Muller, Philippe ;
David, Karine ;
Couch, Daniel ;
Perrot-Rechenmann, Catherine ;
Fleming, Andrew J. .
PLANT CELL, 2008, 20 (10) :2746-2762
[7]   ABP1 is required for organized cell elongation and division in Arabidopsis embryogenesis [J].
Chen, JG ;
Ullah, H ;
Young, JC ;
Sussman, MR ;
Jones, AM .
GENES & DEVELOPMENT, 2001, 15 (07) :902-911
[8]   Computer simulations reveal properties of the cell-cell signaling network at the shoot apex in Arabidopsis [J].
de Reuille, PB ;
Bohn-Courseau, I ;
Ljung, K ;
Morin, H ;
Carraro, N ;
Godin, C ;
Traas, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (05) :1627-1632
[9]   Plant development is regulated by a family of auxin receptor F box proteins [J].
Dharmasiri, N ;
Dharmasiri, S ;
Weijers, D ;
Lechner, E ;
Yamada, M ;
Hobbie, L ;
Ehrismann, JS ;
Jürgens, G ;
Estelle, M .
DEVELOPMENTAL CELL, 2005, 9 (01) :109-119
[10]   A constant production hypothesis guides leaf venation patterning [J].
Dimitrov, Pavel ;
Zucker, Steven W. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (24) :9363-9368