Prediction of protein function and pathways in the genome era

被引:72
作者
Gabaldón, T [1 ]
Huynen, MA [1 ]
机构
[1] Univ Nijmegen, Ctr Mol & Biomol Informat, Nijmegen Ctr Mol Life Sci, NL-6525 ED Nijmegen, Netherlands
关键词
comparative genomics; function prediction; pathways; genomic context; orthology; RNase L inhibitor;
D O I
10.1007/s00018-003-3387-y
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The growing number of completely sequenced genomes adds new dimensions to the use of sequence analysis to predict protein function. Compared with the classical knowledge transfer from one protein to a similar sequence (homology-based function prediction), knowledge about the corresponding genes in other genomes (orthology-based function prediction) provides more specific information about the protein's function, while the analysis of the sequence in its genomic context (context-based function prediction) provides information about its functional context. Whereas homology-based methods predict the molecular function of a protein, genomic context methods predict the biological process in which it plays a role. These complementary approaches can be combined to elucidate complete functional networks and biochemical pathways from the genome sequence of an organism. Here we review recent advances in the field of genomic-context based methods of protein function prediction. Techniques are highlighted with examples, including an analysis that combines information from genomic-context with homology to predict a role of the RNase L inhibitor in the maturation of ribosomal RNA.
引用
收藏
页码:930 / 944
页数:15
相关论文
共 150 条
[1]   Potential artefacts in protein-interaction networks [J].
Aloy, P ;
Russell, RB .
FEBS LETTERS, 2002, 530 (1-3) :253-254
[2]   Interrogating protein interaction networks through structural biology [J].
Aloy, P ;
Russell, RB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (09) :5896-5901
[3]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[4]   Lineage-specific loss and divergence of functionally linked genes in eukaryotes [J].
Aravind, L ;
Watanabe, H ;
Lipman, DJ ;
Koonin, EV .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (21) :11319-11324
[5]   Bayesian gene/species tree reconciliation and orthology analysis using MCMC [J].
Arvestad, Lars ;
Berglund, Ann-Charlotte ;
Lagergren, Jens ;
Sennblad, Bengt .
BIOINFORMATICS, 2003, 19 :i7-i15
[6]  
Ashburner M, 2001, GENOME RES, V11, P1425
[7]  
Bader GD, 2003, NUCLEIC ACIDS RES, V31, P248, DOI 10.1093/nar/gkg056
[8]   HIDDEN MARKOV-MODELS OF BIOLOGICAL PRIMARY SEQUENCE INFORMATION [J].
BALDI, P ;
CHAUVIN, Y ;
HUNKAPILLER, T ;
MCCLURE, MA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (03) :1059-1063
[9]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[10]  
Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkr1065, 10.1093/nar/gkh121]