Influence of soil depth on the decomposition of Bouteloua gracilis roots in the shortgrass steppe

被引:88
作者
Gill, RA [1 ]
Burke, IC
机构
[1] Colorado State Univ, Grad Degree Program Ecol, Ft Collins, CO 80523 USA
[2] Duke Univ, Dept Biol, Durham, NC 27708 USA
[3] Colorado State Univ, Dept Forest Sci, Ft Collins, CO 80523 USA
[4] Washington State Univ, Program Environm Sci & Reg Planning, Pullman, WA 99164 USA
关键词
Bouteloua gracilis; decomposition; litterbag; soil depth; tissue chemistry;
D O I
10.1023/A:1016146805542
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The distribution and turnover of plant litter contribute to soil structure, the availability of plant nutrients, and regional budgets of greenhouse gasses. Traditionally, studies of decomposition have focused on the upper soil profile. Other work has shown that temperature, precipitation, and soil texture are important determinates of patterns of decomposition. Since these factors all vary through a soil profile, it has been suggested that decomposition rates may vary with depth in a soil profile. In this work, we examine patterns of root decomposition through a shortgrass steppe soil profile. We buried fresh root litter from Bouteloua gracilis plants in litterbags at 10, 40, 70, and 100 cm. Litterbags were retrieved six times between July 1996 and May 1999. We found that the decomposition rate for fresh root litter was approximately 50% slower at 1 m than it was at 10 cm. After 33 months, 55% of the root mass buried at 10 cm remained, while 72% of the root mass buried at 1 m was still present. This corresponds to a 19-year residence time for roots at 10 cm and a 36-year residence time for roots at 1 m. Mass loss rates decreased linearly from 10 cm to 1 m. Patterns of total carbon and cellulose loss rates followed those of mass loss rates. Roots at 1 m tended to accumulate lignin-like compounds over the course of the experiment. Differences in the stabilization of lignin may be a consequence of differences in microbial community through a shortgrass steppe soil profile.
引用
收藏
页码:233 / 242
页数:10
相关论文
共 54 条
[1]   ROOT TURNOVER AS DETERMINANT OF THE CYCLING OF C, N, AND P IN A DRY HEATHLAND ECOSYSTEM [J].
AERTS, R ;
BAKKER, C ;
DECALUWE, H .
BIOGEOCHEMISTRY, 1992, 15 (03) :175-190
[2]  
ANDERSON DW, 1985, J SOIL WATER CONSERV, V40, P211
[3]   Plant-induced changes in soil structure: Processes and feedbacks [J].
Angers, DA ;
Caron, J .
BIOGEOCHEMISTRY, 1998, 42 (1-2) :55-72
[4]   MICROBIAL AND FAUNAL INTERACTIONS AND EFFECTS ON LITTER NITROGEN AND DECOMPOSITION IN AGROECOSYSTEMS [J].
BEARE, MH ;
PARMELEE, RW ;
HENDRIX, PF ;
CHENG, WX ;
COLEMAN, DC ;
CROSSLEY, DA .
ECOLOGICAL MONOGRAPHS, 1992, 62 (04) :569-591
[6]   δ13C values of soil organic carbon and their use in documenting vegetation change in a subtropical savanna ecosystem [J].
Boutton, TW ;
Archer, SR ;
Midwood, AJ ;
Zitzer, SF ;
Bol, R .
GEODERMA, 1998, 82 (1-3) :5-41
[7]   TEXTURE, CLIMATE, AND CULTIVATION EFFECTS ON SOIL ORGANIC-MATTER CONTENT IN US GRASSLAND SOILS [J].
BURKE, IC ;
YONKER, CM ;
PARTON, WJ ;
COLE, CV ;
FLACH, K ;
SCHIMEL, DS .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1989, 53 (03) :800-805
[8]  
Dormaar JF, 1992, NATURAL GRASSLANDS I, P121
[9]  
DOXTADER KG, 1969, 21 US IBP COL STAT U
[10]   MECHANISTIC SIMULATION OF VERTICAL-DISTRIBUTION OF CARBON CONCENTRATIONS AND RESIDENCE TIMES IN SOILS [J].
ELZEIN, A ;
BALESDENT, J .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1995, 59 (05) :1328-1335