Continuous-time solver for quantum impurity models

被引:927
作者
Werner, Philipp
Comanac, Armin
de' Medici, Luca
Troyer, Matthias
Millis, Andrew J.
机构
[1] Columbia Univ, Dept Phys, New York, NY 10027 USA
[2] Ecole Polytech, Ctr Phys Theor, F-91128 Palaiseau, France
[3] ETH Honggerberg, Inst Theoret Phys, CH-8093 Zurich, Switzerland
关键词
D O I
10.1103/PhysRevLett.97.076405
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a new continuous-time solver for quantum impurity models such as those relevant to dynamical mean field theory. It is based on a stochastic sampling of a perturbation expansion in the impurity-bath hybridization parameter. Comparisons with Monte Carlo and exact diagonalization calculations confirm the accuracy of the new approach, which allows very efficient simulations even at low temperatures and for strong interactions. As examples of the power of the method we present results for the temperature dependence of the kinetic energy and the free energy, enabling an accurate location of the temperature-driven metal-insulator transition.
引用
收藏
页数:4
相关论文
共 17 条
[1]   The ALPS Project: Open Source Software for Strongly Correlated Systems [J].
Alet, F. ;
Dayal, P. ;
Grzesik, A. ;
Honecker, A. ;
Koerner, M. ;
Laeuchli, A. ;
Manmana, S. R. ;
McCulloch, I. P. ;
Michel, F. ;
Noack, R. M. ;
Schmid, G. ;
Schollwoeck, U. ;
Stoeckli, F. ;
Todo, S. ;
Trebst, S. ;
Troyer, M. ;
Werner, P. ;
Wessel, S. .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2005, 74 :30-35
[2]   EXACT DIAGONALIZATION APPROACH TO CORRELATED FERMIONS IN INFINITE DIMENSIONS - MOTT TRANSITION AND SUPERCONDUCTIVITY [J].
CAFFAREL, M ;
KRAUTH, W .
PHYSICAL REVIEW LETTERS, 1994, 72 (10) :1545-1548
[3]  
CAPONE M, CONDMAT0512484
[4]   NUMERICAL-STUDIES OF STRONGLY CORRELATED ELECTRONIC MODELS [J].
DAGOTTO, E .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1991, 5 (1-2) :77-111
[5]   Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions [J].
Georges, A ;
Kotliar, G ;
Krauth, W ;
Rozenberg, MJ .
REVIEWS OF MODERN PHYSICS, 1996, 68 (01) :13-125
[6]   HUBBARD-MODEL IN INFINITE DIMENSIONS [J].
GEORGES, A ;
KOTLIAR, G .
PHYSICAL REVIEW B, 1992, 45 (12) :6479-6483
[7]   MONTE-CARLO METHOD FOR MAGNETIC-IMPURITIES IN METALS [J].
HIRSCH, JE ;
FYE, RM .
PHYSICAL REVIEW LETTERS, 1986, 56 (23) :2521-2524
[8]   SIGN PROBLEM IN THE NUMERICAL-SIMULATION OF MANY-ELECTRON SYSTEMS [J].
LOH, EY ;
GUBERNATIS, JE ;
SCALETTAR, RT ;
WHITE, SR ;
SCALAPINO, DJ ;
SUGAR, RL .
PHYSICAL REVIEW B, 1990, 41 (13) :9301-9307
[9]   Quantum cluster theories [J].
Maier, T ;
Jarrell, M ;
Pruschke, T ;
Hettler, MH .
REVIEWS OF MODERN PHYSICS, 2005, 77 (03) :1027-1080
[10]   CORRELATED LATTICE FERMIONS IN D=INFINITY DIMENSIONS [J].
METZNER, W ;
VOLLHARDT, D .
PHYSICAL REVIEW LETTERS, 1989, 62 (03) :324-327