Competition between Escherichia coli strains expressing either a periplasmic or a membrane-bound nitrate reductase:: does Nap confer a selective advantage during nitrate-limited growth?

被引:131
作者
Potter, LC [1 ]
Millington, P [1 ]
Griffiths, L [1 ]
Thomas, GH [1 ]
Cole, JA [1 ]
机构
[1] Univ Birmingham, Sch Biochem, Birmingham B15 2TT, W Midlands, England
关键词
chemostat; dual nitrate reductases;
D O I
10.1042/0264-6021:3440077
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The physiological role of the periplasmic nitrate reductase, Nap, one of the three nitrate reductases synthesized by Escherichia coli K-12, has been investigated. A series of double mutants that express only one nitrate reductase were grown anaerobically in batch cultures with glycerol as the non-fermentable carbon source and nitrate as the terminal electron acceptor. Only the strain expressing nitrate reductase A grew rapidly under these conditions. Introduction of a narL mutation severely decreased the growth rate of the nitrate reductase A strain, but enhanced the growth of the Nap(+) strain. The ability to use nitrate as a terminal electron acceptor for anaerobic growth is therefore regulated primarily by the NarL protein at the level of transcription. Furthermore, the strain expressing nitrate reductase A had a substantial selective advantage in competition with the strain expressing only Nap during nitrate-sufficient continuous culture. However, the strain expressing Nap was preferentially selected during nitrate-limited continuous growth. The saturation constants for nitrate for the two strains (which numerically are equal to the nitrate concentrations at half of the maximum specific growth rate and therefore reflect the relative affinities for nitrate) were estimated using the integrated Monod equation to be 15 and 50 mu M for Nap and nitrate reductase A respectively. This difference is sufficient to explain the selective advantage of the Nap(+) strain during nitrate-limited growth. It is concluded that one physiological role of the periplasmic nitrate reductase of enteric bacteria is to enable bacteria to scavenge nitrate in nitrate-limited environments.
引用
收藏
页码:77 / 84
页数:8
相关论文
共 36 条
[1]  
ALEF K, 1979, Z NATURFORSCH C, V34, P33
[2]   SITE-DIRECTED MUTAGENESIS OF CONSERVED CYSTEINE RESIDUES WITHIN THE BETA-SUBUNIT OF ESCHERICHIA-COLI NITRATE REDUCTASE - PHYSIOLOGICAL, BIOCHEMICAL, AND EPR CHARACTERIZATION OF THE MUTATED ENZYMES [J].
AUGIER, V ;
GUIGLIARELLI, B ;
ASSO, M ;
BERTRAND, P ;
FRIXON, C ;
GIORDANO, G ;
CHIPPAUX, M ;
BLASCO, F .
BIOCHEMISTRY, 1993, 32 (08) :2013-2023
[3]   The periplasmic nitrate reductase in Pseudomonas sp strain G-179 catalyzes the first step of denitrification [J].
Bedzyk, L ;
Wang, T ;
Ye, RW .
JOURNAL OF BACTERIOLOGY, 1999, 181 (09) :2802-2806
[4]   PERIPLASMIC AND MEMBRANE-BOUND RESPIRATORY NITRATE REDUCTASES IN THIOSPHAERA-PANTOTROPHA - THE PERIPLASMIC ENZYME CATALYZES THE 1ST STEP IN AEROBIC DENITRIFICATION [J].
BELL, LC ;
RICHARDSON, DJ ;
FERGUSON, SJ .
FEBS LETTERS, 1990, 265 (1-2) :85-87
[5]   THE NAPEDABC GENE-CLUSTER ENCODING THE PERIPLASMIC NITRATE REDUCTASE SYSTEM OF THIOSPHAERA-PANTOTROPHA [J].
BERKS, BC ;
RICHARDSON, DJ ;
REILLY, A ;
WILLIS, AC ;
FERGUSON, SJ .
BIOCHEMICAL JOURNAL, 1995, 309 :983-992
[6]   CONSTRUCTION AND CHARACTERIZATION OF NEW CLONING VEHICLES .2. MULTIPURPOSE CLONING SYSTEM [J].
BOLIVAR, F ;
RODRIGUEZ, RL ;
GREENE, PJ ;
BETLACH, MC ;
HEYNEKER, HL ;
BOYER, HW ;
CROSA, JH ;
FALKOW, S .
GENE, 1977, 2 (02) :95-113
[7]   SOIL AND SEDIMENT BACTERIA CAPABLE OF AEROBIC NITRATE RESPIRATION [J].
CARTER, JP ;
HSIAO, YS ;
SPIRO, S ;
RICHARDSON, DJ .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1995, 61 (08) :2852-2858
[8]  
COLE JA, 1990, FEMS SYMP, P57
[9]   NITRITE REDUCTION TO AMMONIA BY FERMENTATIVE BACTERIA - SHORT-CIRCUIT IN THE BIOLOGICAL NITROGEN-CYCLE [J].
COLE, JA ;
BROWN, CM .
FEMS MICROBIOLOGY LETTERS, 1980, 7 (02) :65-72
[10]  
COLE JA, 1988, SOC GEN MICROBIOL S, V42, P281