Nonextensive Pesin identity: Exact renormalization group analytical results for the dynamics at the edge of chaos of the logistic map

被引:95
作者
Baldovin, F
Robledo, A
机构
[1] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil
[2] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico
来源
PHYSICAL REVIEW E | 2004年 / 69卷 / 04期
关键词
Entropic properties - Feigenbaum attractors - Logistic maps - Lyapunov coefficients;
D O I
10.1103/PhysRevE.69.045202
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We show that the dynamical and entropic properties at the chaos threshold of the logistic map are naturally linked through the nonextensive expressions for the sensitivity to initial conditions and for the entropy. We corroborate analytically, with the use of the Feigenbaum renormalization group transformation, the equality between the generalized Lyapunov coefficient lambda(q) and the rate of entropy production, K-q, given by the nonextensive statistical mechanics. Our results advocate the validity of the q-generalized Pesin identity at critical points of one-dimensional nonlinear dissipative maps.
引用
收藏
页码:4 / 1
页数:4
相关论文
共 18 条
[1]   DYNAMICAL BEHAVIOR AT THE ONSET OF CHAOS [J].
ANANIA, G ;
POLITI, A .
EUROPHYSICS LETTERS, 1988, 7 (02) :119-124
[2]  
[Anonymous], 1988, DETERMINISTIC CHAOS
[3]  
Baldovin F, 2002, PHYS REV E, V66, DOI [10.1103/PhysRevE.66.045104, 10.1103/PhysrevE.66.045104]
[4]   Sensitivity to initial conditions at bifurcations in one-dimensional nonlinear maps: Rigorous nonextensive solutions [J].
Baldovin, F ;
Robledo, A .
EUROPHYSICS LETTERS, 2002, 60 (04) :518-524
[5]  
BALDOVIN F, CONDMAT0202095
[6]   Dynamical foundations of nonextensive statistical mechanics [J].
Beck, C .
PHYSICAL REVIEW LETTERS, 2001, 87 (18) :180601-1
[7]   Measuring nonextensitivity parameters in a turbulent Couette-Taylor flow [J].
Beck, C ;
Lewis, GS ;
Swinney, HL .
PHYSICAL REVIEW E, 2001, 63 (03) :353031-353034
[8]  
Beck C., 1993, THERMODYNAMICS CHAOT
[9]   Metastable states in a class of long-range Hamiltonian systems [J].
Campa, A ;
Giansanti, A ;
Moroni, D .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 305 (1-2) :137-143
[10]   High-energy physics - To B or not to B? [J].
Cho, A .
SCIENCE, 2003, 302 (5650) :1497-1498