Partial abductive inference in Bayesian belief networks using a genetic algorithm

被引:23
作者
de Campos, LM
Gámez, JA [1 ]
Moral, S
机构
[1] Univ Castilla La Mancha, Escuela Politecn Super, Dept Informat, Albacete 02071, Spain
[2] Univ Granada, Escuela Tecn Super Ingn Informat, Dept Ciencias Comp & Inteligencia Artificial, E-18071 Granada, Spain
关键词
abductive inference; most probable explanation; Bayesian belief networks; genetic algorithms; probabilistic reasoning;
D O I
10.1016/S0167-8655(99)00088-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Abductive inference in Bayesian belief networks is the process of generating the K most probable configurations given an observed evidence. When we are only interested in a subset of the network's variables, this problem is called partial abductive inference. Both problems are NP-hard, and so exact computation is not always possible. This paper describes an approximate method based on genetic algorithms to perform partial abductive inference. We have tested the algorithm using the alarm network and from the experimental results we can conclude that the algorithm presented here is a good tool to perform this kind of probabilistic reasoning. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1211 / 1217
页数:7
相关论文
共 10 条
[1]  
BEINLICH I, 1989, KSL8884 STANF U MED
[2]  
GAMEZ JA, 1998, THESIS U GRANADA
[3]   ABDUCTIVE REASONING IN BAYESIAN BELIEF NETWORKS USING A GENETIC ALGORITHM [J].
GELSEMA, ES .
PATTERN RECOGNITION LETTERS, 1995, 16 (08) :865-871
[4]  
Henrion M., 1988, UNCERTAINTY ARTIFICI, P149, DOI DOI 10.1016/B978-0-444-70396-5.50019-4
[5]  
Jensen F.V., 1996, INTRO BAYESIAN NETWO, V210
[6]  
MICHALEWICZ Z, 1996, GENETIC ALGORITHMS P
[7]  
NEAPLITAN RE, 1990, PROBABILISTIC REASON
[8]  
Pearl J., 1988, PROBABILISTIC REASON, DOI [DOI 10.1016/C2009-0-27609-4, 10.1016/c2009-0-27609-4]
[9]   An Evolutionary Computing Approach to Probabilistic Reasoning on Bayesian Networks [J].
Rojas-Guzman, Carlos ;
Kramer, Mark A. .
EVOLUTIONARY COMPUTATION, 1996, 4 (01) :57-85
[10]   FINDING MAPS FOR BELIEF NETWORKS IS NP-HARD [J].
SHIMONY, SE .
ARTIFICIAL INTELLIGENCE, 1994, 68 (02) :399-410