A general metric and parallel framework for adaptive image fusion in clusters

被引:14
作者
Wei, Jingbo [1 ,3 ]
Liu, Dingsheng [1 ]
Wang, Lizhe [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing, Peoples R China
[2] China Univ Geosci, Sch Comp, Beijing, Peoples R China
[3] Univ Chinese Acad Sci, Beijing, Peoples R China
关键词
parallel processing; genetic algorithms; Markov random fields; remote sensing image processing; MULTISPECTRAL IMAGES; ALGORITHMS;
D O I
10.1002/cpe.3037
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This article is dedicated to techniques and theories of image fusion in automatic ways and addresses two issuesthe parameter setting and quality assessment. Optimal parameters are in demand for specific applications or comparison between fusion methods because, as basic evidence, different parameters bring different fusion effects varying over a large range. In this paper, we propose a general framework of online parameter training to search optimal values that best suit input images. Furthermore, we optimized the compute-intensive training process using parallelization and genetic algorithm, as well as patches extraction. We also propose a metricspatial and spectral distortionas the learning target. The spatial and spectral distortion is a fuzzy combination of mean potential energy measuring spatial distortion and Q4 measuring spectral distortion. Optimization validation on weighted Gram-Schmidt fusion indicated linear or superlinear acceleration ability, which proved that the proposed learning framework can speed up the learning process of image fusion to an acceptable time, and can thus be applied to high-performance platforms to process large volumes of data. Copyright (c) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:1375 / 1387
页数:13
相关论文
共 30 条
  • [1] Adelson E. H., 1984, RCA Engineer, V29, P33
  • [2] Improving component substitution pansharpening through multivariate regression of MS plus Pan data
    Aiazzi, Bruno
    Baronti, Stefano
    Selva, Massimo
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (10): : 3230 - 3239
  • [3] Multifocus image fusion scheme based on features of multiscale products and PCNN in lifting stationary wavelet domain
    Chai, Y.
    Li, H. F.
    Guo, M. Y.
    [J]. OPTICS COMMUNICATIONS, 2011, 284 (05) : 1146 - 1158
  • [4] A new intensity-hue-saturation fusion approach to image fusion with a tradeoff parameter
    Choi, Myungjin
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (06): : 1672 - 1682
  • [5] Dammavalam SR., 2012, IJSC, V3, P13, DOI [10.5121/ijsc.2012.3102, DOI 10.5121/IJSC.2012.3102]
  • [6] FAST ALGORITHMS FOR LOW-LEVEL VISION
    DERICHE, R
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1990, 12 (01) : 78 - 87
  • [7] PAN-sharpening of very high resolution multispectral images using genetic algorithms
    Garzelli, A.
    Nencini, F.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2006, 27 (15) : 3273 - 3292
  • [8] Fusion of Panchromatic and Multispectral Images by Genetic Algorithms
    Garzelli, Andrea
    Nencini, Filippo
    [J]. 2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 3810 - 3813
  • [9] Fusion of multispectral and panchromatic images using improved IHS and PCA mergers based on wavelet decomposition
    González-Audícana, M
    Saleta, JL
    Catalán, RG
    García, R
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (06): : 1291 - 1299
  • [10] A new look at IHS-like image fusion methods (vol 2, pg 177, 2001)
    Huang, Ping S.
    Tu, Te-Ming
    [J]. INFORMATION FUSION, 2007, 8 (02) : 217 - 218