Automatic identification of Mycobacterium tuberculosis by Gaussian mixture models

被引:54
作者
Forero, M. G.
Cristobal, G.
Desco, M.
机构
[1] CSIC, Inst Opt, E-28006 Madrid, Spain
[2] Univ Birmingham, Sch Biosci, Birmingham, W Midlands, England
[3] Hosp Gen Gregorio Maranon, Madrid, Spain
关键词
bayesian classification; clustering; colour; feature extraction; fluorescence microscopy; Gaussian mixture models; tuberculosis;
D O I
10.1111/j.1365-2818.2006.01610.x
中图分类号
TH742 [显微镜];
学科分类号
摘要
Tuberculosis and other kinds of mycobacteriosis are serious illnesses for which early diagnosis is critical for disease control. Sputum sample analysis is a common manual technique employed for bacillus detection but current sample-analysis techniques are time-consuming, very tedious, subject to poor specificity and require highly trained personnel. Image-processing and pattern-recognition techniques are appropriate tools for improving the manual screening of samples. Here we present a new technique for sputum image analysis that combines invariant shape features and chromatic channel thresholding. Some feature descriptors were extracted from an edited bacillus data set to characterize their shape. They were statistically represented by using a Gaussian mixture model representation and a minimal error Bayesian classification procedure was employed for the last identification stage. This technique constitutes a step towards automating the process and providing a high specificity.
引用
收藏
页码:120 / 132
页数:13
相关论文
共 32 条
[1]   Cigarette smoking as a risk factor for tuberculosis in young adults: A case-control study [J].
Alcaide, J ;
Altet, MN ;
Plans, P ;
Parron, I ;
Folguera, L ;
Salto, E ;
Dominguez, A ;
Pardell, H ;
Salleras, L .
TUBERCLE AND LUNG DISEASE, 1996, 77 (02) :112-116
[2]  
Alvarez-Borrego J, 2000, INT C PATT RECOG, P283
[3]  
[Anonymous], 1996, NEURAL NETWORK PATTE
[4]  
[Anonymous], THESIS U BRISTOL
[6]  
Collins C. H., 1985, Organization and Practice in Tuberculosis Bacteriology
[7]  
CORTIJO F, 2001, TECNICAS SUPERVISADA
[8]  
Cristianini N., 2000, Intelligent Data Analysis: An Introduction, DOI 10.1017/CBO9780511801389
[9]  
CRNCEVIKUREK M, 2002, ACTA CLIN CROAT, V41, P89
[10]   Multivariate Markovian modeling of tuberculosis: Forecast for the United States [J].
Debanne, SM ;
Bielefeld, RA ;
Cauthen, GM ;
Daniel, TM ;
Rowland, DY .
EMERGING INFECTIOUS DISEASES, 2000, 6 (02) :148-157