In Situ Synthesis of Hybrid Aerogels from Single-Walled Carbon Nanotubes and Polyaniline Nanoribbons as Free-Standing, Flexible Energy Storage Electrodes

被引:50
作者
Ge, Dengteng [1 ]
Yang, Lili [1 ,2 ]
Honglawan, Apiradee [1 ]
Li, Jie [1 ]
Yang, Shu [1 ]
机构
[1] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[2] Harbin Inst Technol, Sch Transportat Sci & Engn, Harbin 150090, Peoples R China
基金
中国国家自然科学基金;
关键词
LITHIUM-ION BATTERIES; ENHANCED ELECTROCHEMICAL PROPERTIES; CONDUCTING POLYMER NANOSTRUCTURES; COMPOSITE HYDROGEL; ANODE MATERIAL; NANOBELTS; FILMS; PAPER; NANOCOMPOSITES; PERFORMANCE;
D O I
10.1021/cm404025g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hybrid aerogels consisting of interpenetrating single-walled carbon nanotubes and polyaniline (SWCNT/PANT) nanoribbons were prepared as free-standing, flexible lithium ion battery (LIB) electrodes. Assisted by camphorsulfonic acid, the anilinium cations formed complexation with micelles of dodecylbenzene sulfonate anions within the wet SWCNT network. Very thin PANT nanoribbons (thickness of 10-100 nm, width of 50-1000 nm, and length of 10-20 mu m) were formed within the network after polymerization of aniline. By varying the concentration of aniline, we were able to fine-tune the morphologies of final PANT nanostructures, including nanoribbons, porous nanofibers, and nanoparticles. Specifically, SWCNT/PANI nanoribbon aerogels showed high capacity (185 mAh/g) and good cycle performance (up to 200 times), which could be attributed to synergistic effects of efficient ion/electron transport within the 3D carbon nanotubes network, shortened ion diffusion distance and optimized strain relaxation from nanoribbons and nanotubes, and effective penetration of electrolyte within interconnected nanopores in the network.
引用
收藏
页码:1678 / 1685
页数:8
相关论文
共 49 条
[1]   Three-dimensional electrodes and battery architectures [J].
Arthur, Timothy S. ;
Bates, Daniel J. ;
Cirigliano, Nicolas ;
Johnson, Derek C. ;
Malati, Peter ;
Mosby, James M. ;
Perre, Emilie ;
Rawls, Matthew T. ;
Prieto, Amy L. ;
Dunn, Bruce .
MRS BULLETIN, 2011, 36 (07) :523-531
[2]   Carbon nanotube aerogels [J].
Bryning, Mateusz B. ;
Milkie, Daniel E. ;
Islam, Mohammad F. ;
Hough, Lawrence A. ;
Kikkawa, James M. ;
Yodh, Arjun G. .
ADVANCED MATERIALS, 2007, 19 (05) :661-+
[3]   SDBS-assisted preparation of novel polyaniline planar-structure: Morphology, mechanism and hydrophobicity [J].
Fan, Haosen ;
Wang, Hao ;
Guo, Jing ;
Zhao, Ning ;
Xu, Jian .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2014, 414 :46-49
[4]   Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films [J].
Ge, Jun ;
Cheng, Guanghui ;
Chen, Liwei .
NANOSCALE, 2011, 3 (08) :3084-3088
[5]   Performance of polyaniline/multi-walled carbon nanotubes composites as cathode for rechargeable lithium batteries [J].
He, Ben-Lin ;
Dong, Bin ;
Wang, Wei ;
Li, Hu-Lin .
MATERIALS CHEMISTRY AND PHYSICS, 2009, 114 (01) :371-375
[6]   Structure of semidilute single-wall carbon nanotube suspensions and gels [J].
Hough, LA ;
Islam, MF ;
Hammouda, B ;
Yodh, AG ;
Heiney, PA .
NANO LETTERS, 2006, 6 (02) :313-317
[7]   Silicon-conductive nanopaper for Li-ion batteries [J].
Hu, Liangbing ;
Liu, Nian ;
Eskilsson, Martin ;
Zheng, Guangyuan ;
McDonough, James ;
Wagberg, Lars ;
Cui, Yi .
NANO ENERGY, 2013, 2 (01) :138-145
[8]   Energy and environmental nanotechnology in conductive paper and textiles [J].
Hu, Liangbing ;
Cui, Yi .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (04) :6423-6435
[9]   Nanofiber formation in the chemical polymerization of aniline: A mechanistic study [J].
Huang, JX ;
Kaner, RB .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (43) :5817-5821
[10]   Layer-by-Layer Assembled Polyaniline Nanofiber/Multiwall Carbon Nanotube Thin Film Electrodes for High-Power and High-Energy Storage Applications [J].
Hyder, Md Nasim ;
Lee, Seung Woo ;
Cebeci, Fevzi C. ;
Schmidt, Daniel J. ;
Shao-Horn, Yang ;
Hammond, Paula T. .
ACS NANO, 2011, 5 (11) :8552-8561