Predator-prey quasicycles from a path-integral formalism

被引:8
作者
Butler, Thomas [1 ]
Reynolds, David
机构
[1] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
来源
PHYSICAL REVIEW E | 2009年 / 79卷 / 03期
基金
美国国家科学基金会;
关键词
master equation; predator-prey systems; stochastic processes; FIELD-THEORY; DYNAMICS; KINETICS; SYSTEMS; LATTICE; MODEL;
D O I
10.1103/PhysRevE.79.032901
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The existence of beyond mean-field quasicycle oscillations in a simple spatial model of predator-prey interactions is derived from a path-integral formalism. The results agree substantially with those obtained from analysis of similar models using system size expansions of the master equation. In all of these analyses, the discrete nature of predator-prey populations and finite-size effects lead to persistent oscillations in time, but spatial patterns fail to form. The path-integral formalism goes beyond mean-field theory and provides a focus on individual realizations of the stochastic time evolution of population not captured in the standard master-equation approach.
引用
收藏
页数:4
相关论文
共 22 条
[1]  
[Anonymous], 2006, EVOLUTIONARY DYNAMIC, DOI DOI 10.2307/J.CTVJGHW98
[2]   Phase transitions and oscillations in a lattice prey-predator model [J].
Antal, T ;
Droz, M .
PHYSICAL REVIEW E, 2001, 63 (05)
[3]   RENORMALIZED FIELD-THEORY OF CRITICAL DYNAMICS [J].
BAUSCH, R ;
JANSSEN, HK ;
WAGNER, H .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1976, 24 (01) :113-127
[4]   AUTOMATA NETWORK PREDATOR-PREY MODEL WITH PURSUIT AND EVASION [J].
BOCCARA, N ;
ROBLIN, O ;
ROGER, M .
PHYSICAL REVIEW E, 1994, 50 (06) :4531-4541
[5]  
CARDY JL, 1996, MATH BEAUTY PHYS, P113
[6]  
DOI M, 1976, J PHYS A-MATH GEN, V9, P1465, DOI 10.1088/0305-4470/9/9/008
[7]   KINETICS OF A MODEL FOR NUCLEATION-CONTROLLED POLYMER CRYSTAL-GROWTH [J].
GOLDENFELD, N .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (14) :2807-2821
[8]   PARTIAL-DIFFERENTIAL EQUATIONS IN ECOLOGY - SPATIAL INTERACTIONS AND POPULATION-DYNAMICS [J].
HOLMES, EE ;
LEWIS, MA ;
BANKS, JE ;
VEIT, RR .
ECOLOGY, 1994, 75 (01) :17-29
[9]   The field theory approach to percolation processes [J].
Janssen, HK ;
Täuber, UC .
ANNALS OF PHYSICS, 2005, 315 (01) :147-192
[10]   Quasicycles in a spatial predator-prey model [J].
Lugo, Carlos A. ;
McKane, Alan J. .
PHYSICAL REVIEW E, 2008, 78 (05)