On oscillation of a logistic equation with several delays

被引:18
作者
Berezansky, L [1 ]
Braverman, E
机构
[1] Ben Gurion Univ Negev, Dept Math & Comp Sci, IL-84105 Beer Sheva, Israel
[2] Technion Israel Inst Technol, Dept Comp Sci, IL-32000 Haifa, Israel
关键词
D O I
10.1016/S0377-0427(99)00260-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a scalar delay logistic equation (y) over dot(t) = y(t) (k = 1)Sigma(m)r(k)(t) (1 - y(h(k)(t))/K), h(k)(t) less than or equal to t, a connection between oscillating properties of this equation, the corresponding differential inequalities and the linear equation (x) over dot(t) + (k = 1)Sigma(m)r(k)(t)x(h(k)(t)) = 0, established. Explicit nonoscillation and oscillation conditions are presented. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:255 / 265
页数:11
相关论文
共 11 条
[1]  
Berezansky L., 1997, DYNAMIC SYSTEMS APPL, V6, P567
[2]  
Erbe L.H., 1995, Oscillation Theory for Functional Differential Equations
[3]  
Gopalsamy K., 2013, Stability and Oscillations in Delay Differential Equations of Population Dynamics, V74
[4]   NECESSARY AND SUFFICIENT CONDITIONS FOR THE OSCILLATIONS OF A MULTIPLICATIVE DELAY LOGISTIC EQUATION [J].
GRACE, SR ;
GYORI, I ;
LALLI, BS .
QUARTERLY OF APPLIED MATHEMATICS, 1995, 53 (01) :69-79
[5]  
Gy??ri I., 1991, OSCILLATION THEORY D
[6]  
JONES GS, 1962, J MATH ANAL APPL, V4, P440
[7]  
Kakutani S., 1958, ANN MATH STUDIES, V4, P1
[8]   GLOBAL STABILITY OF A BIOLOGICAL MODEL WITH TIME-DELAY [J].
LENHART, SM ;
TRAVIS, CC .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 96 (01) :75-78
[9]   TIME-DELAY VERSUS STABILITY IN POPULATION MODELS WITH 2 AND 3 TROPHIC LEVELS [J].
MAY, RM .
ECOLOGY, 1973, 54 (02) :315-325
[10]  
Wright E.M., 1955, J REINE ANGEW MATH, V194, P66, DOI [DOI 10.1515/CRLL.1955.194.66, 10.1515/crll.1955.194.66]