Mechanisms of solvent tolerance in gram-negative bacteria

被引:602
作者
Ramos, JL [1 ]
Duque, E [1 ]
Gallegos, MT [1 ]
Godoy, P [1 ]
Ramos-González, MI [1 ]
Rojas, A [1 ]
Terán, W [1 ]
Segura, A [1 ]
机构
[1] CSIC, Dept Plant Biochem & Mol & Cellular Biol, Estac Expt Zaidin, E-18008 Granada, Spain
关键词
cis/trans lipids; cis-to-trans isomerase; RND efflux pumps; solvent tolerance; Pseudomonas; transcriptional repressors;
D O I
10.1146/annurev.micro.56.012302.161038
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Organic solvents can be toxic to microorganisms, depending on the inherent toxicity of the solvent and the intrinsic tolerance of the bacterial species and strains. The toxicity of a given solvent correlates with the logarithm of its partition coefficient in n-octanol and water (log P-ow). Organic solvents with a log P-ow between 1.5 and 4.0 are extremely toxic for microorganisms and other living cells because they partition preferentially in the cytoplasmic membrane, disorganizing its structure and impairing vital functions. Several possible mechanisms leading to solvent-tolerance in gram-negative bacteria have been proposed: (a) adaptive alterations of the membrane fatty acids and phospholipid headgroup composition, (b) formation of vesicles loaded with toxic compounds, and (c) energy-dependent active efflux pumps belonging to the resistance-nodulation-cell division (RND) family, which export toxic organic solvents to the external medium. In these mechanisms, changes in the phospholipid profile and extrusion of the solvents seem to be shared by different strains. The most significant changes in phospholipids are an increase in the melting temperature of the membranes by rapid cis-to-trans isomerization of unsaturated fatty acids and modifications in the phospholipid headgroups. Toluene efflux pumps are involved in solvent tolerance in several gram-negative strains, e.g., Escherichia coli, Pseudomonas putida, and Pseudomonas aeruginosa. The AcrAB-TolC and AcrEF-TolC efflux pumps are important for n-hexane tolerance in E. coli. A number of P. putida strains have been isolated that tolerate toxic hydrocarbons such as toluene, styrene, and p-xylene. At least three efflux pumps (TtgABC, TtgDEF, and TtgGHI) are present in the most extensively characterized solvent-tolerant strain, P. putida DOT-T1E, and the number of efflux pumps has been found to correlate with the degree of solvent tolerance in different P. putida strains. The operation of these efflux pumps seems to be coupled to the proton motive force via the TonB system, although the intimate mechanism of energy transfer remains elusive. Specific and global regulators control the expression of the efflux pump operons of E. coli and P. putida at the transcriptional level.
引用
收藏
页码:743 / 768
页数:28
相关论文
共 98 条
[1]   Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon [J].
Alekshun, MN ;
Levy, SB .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1997, 41 (10) :2067-2075
[2]   The crystal structure of MarR, a regulator of multiple antibiotic resistance, at 2.3 Å resolution [J].
Alekshun, MN ;
Levy, SB ;
Mealy, TR ;
Seaton, BA ;
Head, JF .
NATURE STRUCTURAL BIOLOGY, 2001, 8 (08) :710-714
[3]   ISOLATION OF NOVEL TOLUENE-TOLERANT STRAIN OF PSEUDOMONAS-AERUGINOSA [J].
AONO, R ;
ITO, M ;
INOUE, A ;
HORIKOSHI, K .
BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 1992, 56 (01) :145-146
[4]   PREPARATION OF ORGANIC SOLVENT-TOLERANT MUTANTS FROM ESCHERICHIA-COLI K-12 [J].
AONO, R ;
AIBE, K ;
INOUE, A ;
HORIKOSHI, K .
AGRICULTURAL AND BIOLOGICAL CHEMISTRY, 1991, 55 (07) :1935-1938
[5]   Involvement of outer membrane protein TolC, a possible member of the mar-sox regulon, in maintenance and improvement of organic solvent tolerance of Escherichia coli K-12 [J].
Aono, R ;
Tsukagoshi, N ;
Yamamoto, M .
JOURNAL OF BACTERIOLOGY, 1998, 180 (04) :938-944
[6]   A CLOSE CORRELATION BETWEEN IMPROVEMENT OF ORGANIC-SOLVENT TOLERANCE LEVELS AND ALTERATION OF RESISTANCE TOWARD LOW-LEVELS OF MULTIPLE ANTIBIOTICS IN ESCHERICHIA-COLI [J].
AONO, R ;
KOBAYASHI, M ;
NAKAJIMA, H ;
KOBAYASHI, H .
BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 1995, 59 (02) :213-218
[7]   Organic solvent tolerance and antibiotic resistance increased by overexpression of marA in Escherichia coli [J].
Asako, H ;
Nakajima, H ;
Kobayashi, K ;
Kobayashi, M ;
Aono, R .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1997, 63 (04) :1428-1433
[8]   Structures of gram-negative cell walls and their derived membrane vesicles [J].
Beveridge, TJ .
JOURNAL OF BACTERIOLOGY, 1999, 181 (16) :4725-4733
[9]  
Bibi E, 2001, J MOL MICROB BIOTECH, V3, P171
[10]   Multidrug transporters in prokaryotic and eukaryotic cells: physiological functions and transport mechanisms [J].
Blackmore, CG ;
McNaughton, PA ;
van Veen, HW .
MOLECULAR MEMBRANE BIOLOGY, 2001, 18 (01) :97-103