Energetics and diffusion of intrinsic surface and subsurface defects on anatase TiO2(101)

被引:152
作者
Cheng, Hongzhi [1 ]
Selloni, Annabella [1 ]
机构
[1] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
关键词
conduction bands; density functional theory; interstitials; semiconductor materials; surface diffusion; titanium compounds; vacancies (crystal); OXYGEN VACANCIES; TIO2; 110; RUTILE; PRINCIPLES; SCIENCE;
D O I
10.1063/1.3194301
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report on density functional theory (DFT) calculations of the formation energies and diffusion pathways of oxygen vacancies and Ti interstitials at and near the (101) surface and in the bulk of the anatase polymorph of TiO2. At the generalized gradient approximation level, both defects are found to be energetically more stable by similar to 0.5 eV or more at bulk and subsurface sites than on the surface. Moreover, the energy barriers to diffuse from the surface to the bulk are rather low, while the opposite is true for the barriers to diffuse from the bulk to the surface. This indicates that similar to Ti interstitials, also oxygen vacancies should preferentially occur at subsurface rather than at surface sites. To substantiate these findings, additional DFT+U calculations have been performed using different values of U in the range 2.5 < U < 4.5 eV. These show small differences in the relative stabilities of surface and subsurface oxygen vacancies with subsurface vacancies being more stable at low U values and a crossover in stability taking place around U similar to 3 eV. Analogous calculations for the TiO2(110) surface of rutile show that surface bridging oxygen vacancies are largely favored with respect to subsurface vacancies for all values of U. Altogether, our results provide evidence of important differences between reduced anatase and rutile surfaces in agreement with recent experimental observations.
引用
收藏
页数:10
相关论文
共 36 条
[1]   BAND THEORY AND MOTT INSULATORS - HUBBARD-U INSTEAD OF STONER-I [J].
ANISIMOV, VI ;
ZAANEN, J ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1991, 44 (03) :943-954
[2]  
BARONI S, QUANTUM ESPRESSO
[3]   STRUCTURAL ELECTRONIC RELATIONSHIPS IN INORGANIC SOLIDS - POWDER NEUTRON-DIFFRACTION STUDIES OF THE RUTILE AND ANATASE POLYMORPHS OF TITANIUM-DIOXIDE AT 15 AND 295-K [J].
BURDETT, JK ;
HUGHBANKS, T ;
MILLER, GJ ;
RICHARDSON, JW ;
SMITH, JV .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1987, 109 (12) :3639-3646
[4]   Effect of on-site Coulomb repulsion term U on the band-gap states of the reduced rutile (110) TiO2 surface [J].
Calzado, Carmen J. ;
Hernandez, Norge Cruz ;
Sanz, Javier Fdez .
PHYSICAL REVIEW B, 2008, 77 (04)
[5]   Surface and subsurface oxygen vacancies in anatase TiO2 and differences with rutile [J].
Cheng, Hongzhi ;
Selloni, Annabella .
PHYSICAL REVIEW B, 2009, 79 (09)
[6]   Insights into current limitations of density functional theory [J].
Cohen, Aron J. ;
Mori-Sanchez, Paula ;
Yang, Weitao .
SCIENCE, 2008, 321 (5890) :792-794
[7]   Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations [J].
Di Valentin, C ;
Pacchioni, G ;
Selloni, A ;
Livraghi, S ;
Giamello, E .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (23) :11414-11419
[8]   Electronic structure of defect states in hydroxylated and reduced rutile TiO2(110) surfaces [J].
Di Valentin, Cristiana ;
Pacchioni, Gianfranco ;
Selloni, Annabella .
PHYSICAL REVIEW LETTERS, 2006, 97 (16)
[9]   The surface science of titanium dioxide [J].
Diebold, U .
SURFACE SCIENCE REPORTS, 2003, 48 (5-8) :53-229
[10]   One step towards bridging the materials gap:: surface studies of TiO2 anatase [J].
Diebold, U ;
Ruzycki, N ;
Herman, GS ;
Selloni, A .
CATALYSIS TODAY, 2003, 85 (2-4) :93-100