Linear-time encodable and decodable error-correcting codes

被引:181
作者
Spielman, DA
机构
[1] Department of Mathematics, Massachusetts Institute of Technology, Cambridge
基金
美国国家科学基金会;
关键词
asymptotically good error-correcting code; linear-time; expander graph; superconcentrators;
D O I
10.1109/18.556668
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a new class of asymptotically good, linear error-correcting codes. These codes can be both encoded and decoded in linear time. They can also be encoded by logarithmic-depth circuits of linear size and decoded by logarithmic depth circuits of size O(n log n). We present both randomized and explicit constructions of these codes.
引用
收藏
页码:1723 / 1731
页数:9
相关论文
共 25 条
[1]  
Aho A. V., 1974, ADDISON WESLEY SERIE
[2]   EIGENVALUES AND EXPANDERS [J].
ALON, N .
COMBINATORICA, 1986, 6 (02) :83-96
[3]   EXPLICIT CONSTRUCTION OF LINEAR SIZED TOLERANT NETWORKS [J].
ALON, N ;
CHUNG, FRK .
DISCRETE MATHEMATICS, 1988, 72 (1-3) :15-19
[4]  
Bassalygo L. A., 1977, Problems of Information Transmission, V13, P166
[5]  
BIEN F, 1989, NOT AM MATH SOC, V36, P5
[6]   EXPLICIT CONSTRUCTIONS OF LINEAR-SIZED SUPERCONCENTRATORS [J].
GABBER, O ;
GALIL, Z .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1981, 22 (03) :407-420
[7]  
Gelfand S. I., 1973, 2 INT S INF THEORY, P177
[8]   COMPLEXITY OF DECODING REED-SOLOMON CODES [J].
JUSTESEN, J .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1976, 22 (02) :237-238
[9]  
Kahale N., 1992, Proceedings 33rd Annual Symposium on Foundations of Computer Science (Cat. No.92CH3188-0), P296, DOI 10.1109/SFCS.1992.267762
[10]  
Kolmogorov A.N., 1958, Usp. Mat. Nauk., V13, P3