Bose-Einstein condensation of quasi-equilibrium magnons at room temperature under pumping

被引:736
作者
Demokritov, S. O. [1 ]
Demidov, V. E.
Dzyapko, O.
Melkov, G. A.
Serga, A. A.
Hillebrands, B.
Slavin, A. N.
机构
[1] Univ Munster, Inst Appl Phys, D-48149 Munster, Germany
[2] Natl Taras Schevchenko Univ Kiev, Dept Radiophys, UA-01033 Kiev, Ukraine
[3] Tech Univ Kaiserslautern, Fachbereich Phys, D-67663 Kaiserslautern, Germany
[4] Oakland Univ, Dept Phys, Rochester, MI 48309 USA
关键词
D O I
10.1038/nature05117
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Bose-Einstein condensation(1,2) is one of the most fascinating phenomena predicted by quantum mechanics. It involves the formation of a collective quantum state composed of identical particles with integer angular momentum (bosons), if the particle density exceeds a critical value. To achieve Bose - Einstein condensation, one can either decrease the temperature or increase the density of bosons. It has been predicted(3,4) that a quasi-equilibrium system of bosons could undergo Bose - Einstein condensation even at relatively high temperatures, if the flow rate of energy pumped into the system exceeds a critical value. Here we report the observation of Bose - Einstein condensation in a gas of magnons at room temperature. Magnons are the quanta of magnetic excitations in a magnetically ordered ensemble of magnetic moments. In thermal equilibrium, they can be described by Bose - Einstein statistics with zero chemical potential and a temperature-dependent density. In the experiments presented here, we show that by using a technique of microwave pumping it is possible to excite additional magnons and to create a gas of quasi-equilibrium magnons with a non-zero chemical potential. With increasing pumping intensity, the chemical potential reaches the energy of the lowest magnon state, and a Bose condensate of magnons is formed.
引用
收藏
页码:430 / 433
页数:4
相关论文
共 28 条
[1]   OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR [J].
ANDERSON, MH ;
ENSHER, JR ;
MATTHEWS, MR ;
WIEMAN, CE ;
CORNELL, EA .
SCIENCE, 1995, 269 (5221) :198-201
[2]   Measurement of the spatial coherence of a trapped Bose gas at the phase transition [J].
Bloch, I ;
Hänsch, TW ;
Esslinger, T .
NATURE, 2000, 403 (6766) :166-170
[3]   Planck's law and light quantum hypothesis [J].
Bose .
ZEITSCHRIFT FUR PHYSIK, 1924, 26 :178-181
[4]   Condensation and pattern formation in cold exciton gases in coupled quantum wells [J].
Butov, LV .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (50) :R1577-R1613
[5]  
Cottam MG., 1986, LIGHT SCATTERING MAG
[6]   MAGNETOSTATIC MODES OF A FERROMAGNET SLAB [J].
DAMON, RW ;
ESHBACH, JR .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1961, 19 (3-4) :308-320
[7]   BOSE-EINSTEIN CONDENSATION IN A GAS OF SODIUM ATOMS [J].
DAVIS, KB ;
MEWES, MO ;
ANDREWS, MR ;
VANDRUTEN, NJ ;
DURFEE, DS ;
KURN, DM ;
KETTERLE, W .
PHYSICAL REVIEW LETTERS, 1995, 75 (22) :3969-3973
[8]   Extension of the bloch T3/2 law to magnetic nanostructures:: Bose-Einstein condensation -: art. no. 147210 [J].
Della Torre, E ;
Bennett, LH ;
Watson, RE .
PHYSICAL REVIEW LETTERS, 2005, 94 (14)
[9]   Brillouin light scattering studies of confined spin waves: linear and nonlinear confinement [J].
Demokritov, SO ;
Hillebrands, B ;
Slavin, AN .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2001, 348 (06) :441-489
[10]  
Einstein A, 1925, SITZBER PREUSS AKAD, P3