Mineralization and distribution of nutrients in plants and microbes in four arctic ecosystems: responses to warming

被引:151
作者
Schmidt, IK
Jonasson, S
Shaver, GR
Michelsen, A
Nordin, A
机构
[1] Univ Copenhagen, Inst Bot, DK-1353 Copenhagen K, Denmark
[2] Marine Biol Lab, Ctr Ecosyst, Woods Hole, MA 02543 USA
关键词
arctic soil; buried bags; immobilization; plant-microbe interactions; warming;
D O I
10.1023/A:1019642007929
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Mineralization and nutrient distribution in plants and microbes were studied in four arctic ecosystems at Abisko, Northern Sweden and Toolik Lake, Alaska, which have been subjected to long-term warming with plastic greenhouses. Net mineralization and microbial immobilization were studied by the buried bag method and ecosystem pool sizes of C, N and P were determined by harvest methods. The highest amounts of organic N and P were bound in the soil organic matter. Microbial N and P constituted the largest labile pools often equal to (N) or exceeding (P) the amounts stored in the vegetation. Despite large pools of N and P in the soil, net mineralization of N and P was generally low during the growing season, except in the wet sedge tundra, and in most cases lower than the plant uptake requirement. In contrast, the microorganisms immobilized high amounts of nutrients in the buried bags during incubation. The same high immobilization was not observed in the surrounding soil, where the microbial nutrient content in most cases remained constant or decreased over the growing season. This suggests that the low mineralization measured in many arctic ecosystems over the growing season is due to increased immobilization by soil microbes when competition from plant roots is prevented. Furthermore, it suggests that plants compete well with microbes for nutrients in these four ecosystems. Warming increased net mineralization in several cases, which led to increased assimilation of nutrients by plants but not by the microbes.
引用
收藏
页码:93 / 106
页数:14
相关论文
共 62 条
[1]   INSITU STUDIES OF NITROGEN MINERALIZATION AND UPTAKE IN FOREST SOILS - SOME COMMENTS ON METHODOLOGY [J].
ADAMS, MA ;
POLGLASE, PJ ;
ATTIWILL, PM ;
WESTON, CJ .
SOIL BIOLOGY & BIOCHEMISTRY, 1989, 21 (03) :423-429
[2]  
[Anonymous], ARCTIC ECOSYSTEMS CH
[3]  
Berendse F., 1992, Arctic Ecosystems in a Changing Climate: An Ecophysiological Perspective, P337
[4]   Soil nitrogen availability in some arctic ecosystems in northwest Alaska: Responses to temperature and moisture [J].
Binkley, Dan ;
Stottlemyer, Robert ;
Suarez, Frank ;
Cortina, Jordi .
ECOSCIENCE, 1994, 1 (01) :64-70
[5]   Inorganic nitrogen and microbial biomass dynamics before and during spring snowmelt [J].
Brooks, PD ;
Williams, MW ;
Schmidt, SK .
BIOGEOCHEMISTRY, 1998, 43 (01) :1-15
[6]   ARCTIC TERRESTRIAL ECOSYSTEMS AND ENVIRONMENTAL-CHANGE [J].
CALLAGHAN, TV ;
JONASSON, S .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1995, 352 (1699) :259-276
[7]   PHOSPHORUS CYCLING IN ALASKAN COASTAL TUNDRA - HYPOTHESIS FOR THE REGULATION OF NUTRIENT CYCLING [J].
CHAPIN, FS ;
BARSDATE, RJ ;
BAREL, D .
OIKOS, 1978, 31 (02) :189-199
[8]   RESPONSES OF ARCTIC TUNDRA TO EXPERIMENTAL AND OBSERVED CHANGES IN CLIMATE [J].
CHAPIN, FS ;
SHAVER, GR ;
GIBLIN, AE ;
NADELHOFFER, KJ ;
LAUNDRE, JA .
ECOLOGY, 1995, 76 (03) :694-711
[9]   PREFERENTIAL USE OF ORGANIC NITROGEN FOR GROWTH BY A NONMYCORRHIZAL ARCTIC SEDGE [J].
CHAPIN, FS ;
MOILANEN, L ;
KIELLAND, K .
NATURE, 1993, 361 (6408) :150-153
[10]   MICROBIAL ACTIVITY OF TUNDRA AND TAIGA SOILS AT SUBZERO TEMPERATURES [J].
CLEIN, JS ;
SCHIMEL, JP .
SOIL BIOLOGY & BIOCHEMISTRY, 1995, 27 (09) :1231-1234