Isolation and characterization of powdery mildew-resistant Arabidopsis mutants

被引:226
作者
Vogel, J [1 ]
Somerville, S [1 ]
机构
[1] Carnegie Inst Washington, Dept Plant Biol, Stanford, CA 94305 USA
关键词
D O I
10.1073/pnas.030531997
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A compatible interaction between a plant and a pathogen is the result of a complex interplay between many factors of both plant and pathogen origin. Our objective was to identify host factors involved in this interaction. These factors may include susceptibility factors required for pathogen growth, factors manipulated by the pathogen to inactivate or avoid host defenses, or negative regulators of defense responses. To this end, we identified 20 recessive Arabidopsis mutants that do not support normal growth of the powdery mildew pathogen, Erysiphe cichoracearum, Complementation analyses indicated that four loci, designated powdery mildew resistant 1-4 (pmr1-4), are defined by this collection. These mutants do not constitutively accumulate elevated levels of PR1 or PDF1.2 mRNA, indicating that resistance is not simply due to constitutive activation of the salicylic acid- or ethylene- and jasmonic acid-dependent defense pathways. Further Northern blot analyses revealed that some mutants accumulate higher levels of PR1 mRNA than wild type in response to infection by powdery mildew. To test the specificity of the resistance, the pmr mutants were challenged with other pathogens including Pseudomonas syringae, Peronospora parasitica, acid Erysiphe orontii. Surprisingly, one mutant, pmr?, was susceptible to E. orontii, a very closely related powdery mildew, suggesting that a very specific resistance mechanism is operating in this case. Another mutant, pmr4. was resistant to P. parasitica, indicating that this resistance is more generalized. Thus, we have identified a novel collection of mutants affecting genes required for a compatible interaction between a plant and a biotrophic pathogen.
引用
收藏
页码:1897 / 1902
页数:6
相关论文
共 22 条
[1]   Genetic characterization of five powdery mildew disease resistance loci in Arabidopsis thaliana [J].
Adam, L ;
Somerville, SC .
PLANT JOURNAL, 1996, 9 (03) :341-356
[2]  
Ausubel F.M., 1996, CURRENT PROTOCOLS MO
[3]   A MUTATION IN ARABIDOPSIS THAT LEADS TO CONSTITUTIVE EXPRESSION OF SYSTEMIC ACQUIRED-RESISTANCE [J].
BOWLING, SA ;
GUO, A ;
CAO, H ;
GORDON, AS ;
KLESSIG, DF ;
DONG, XI .
PLANT CELL, 1994, 6 (12) :1845-1857
[4]   The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance [J].
Bowling, SA ;
Clarke, JD ;
Liu, YD ;
Klessig, DF ;
Dong, XN .
PLANT CELL, 1997, 9 (09) :1573-1584
[5]   The barley mlo gene: A novel control element of plant pathogen resistance [J].
Buschges, R ;
Hollricher, K ;
Panstruga, R ;
Simons, G ;
Wolter, M ;
Frijters, A ;
vanDaelen, R ;
vanderLee, T ;
Diergaarde, P ;
Groenendijk, J ;
Topsch, S ;
Vos, P ;
Salamini, F ;
Schulze-Lefert, P .
CELL, 1997, 88 (05) :695-705
[6]  
Dangl J. L., 1992, Methods in Arabidopsis research., P393
[7]   SIGNALING AND HOST RANGE VARIATION IN NODULATION [J].
DENARIE, J ;
DEBELLE, F ;
ROSENBERG, C .
ANNUAL REVIEW OF MICROBIOLOGY, 1992, 46 :497-531
[8]   ARABIDOPSIS MUTANTS SIMULATING DISEASE RESISTANCE RESPONSE [J].
DIETRICH, RA ;
DELANEY, TP ;
UKNES, SJ ;
WARD, ER ;
RYALS, JA ;
DANGL, JL .
CELL, 1994, 77 (04) :565-577
[9]   An Arabidopsis mutant with enhanced resistance to powdery mildew [J].
Frye, CA ;
Innes, RW .
PLANT CELL, 1998, 10 (06) :947-956
[10]  
GIESE H, 1997, MYCOTA, P55