Controlled microwave heating as an enabling technology: Expedient synthesis of protease inhibitors in perspective

被引:17
作者
Larhed, Mats [1 ]
Wannberg, Johan [1 ]
Hallberg, Anders [1 ]
机构
[1] Uppsala Univ, BMC, Dept Med Chem, SE-75123 Uppsala, Sweden
来源
QSAR & COMBINATORIAL SCIENCE | 2007年 / 26卷 / 01期
关键词
carbonylation; cross-coupling; drug discovery; microwave; protease inhibitor;
D O I
10.1002/qsar.200620028
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Since the early days of organic chemistry, oil baths, hot plates, metal blocks, and isomantles have been the heating devices of choice for driving chemical reactions. Over the last years, microwave heating has evolved as a well-demonstrated alternative to classic heating with the potential to emerge as the preferred heating method in organic synthesis. In this perspective, we will illustrate that microwave heating has an edge over conventional heating also in medicinal and high-throughput chemistry applications, enabling both an expanded reaction range and the diminishing of reaction times from many hours or days down to minutes. By focusing on the development of protease inhibitors, we present a series of successful lead optimizations starting from complex core structures and using controlled microwave heating as the energy source. In short, hundreds of protease inhibitors have been quickly synthesized under microwave irradiation since the start of our high-speed program back in 1998.
引用
收藏
页码:51 / 68
页数:18
相关论文
共 89 条
[1]   Fast microwave-assisted preparation of aryl and vinyl nitriles and the corresponding tetrazoles from organo-halides [J].
Alterman, M ;
Hallberg, A .
JOURNAL OF ORGANIC CHEMISTRY, 2000, 65 (23) :7984-7989
[2]   Design and fast synthesis of C-terminal duplicated potent C2-symmetric P1/P1′-modified HIV-1 protease inhibitors [J].
Alterman, M ;
Andersson, HO ;
Garg, N ;
Ahlsén, G ;
Lövgren, S ;
Classon, B ;
Danielson, UH ;
Kvarnström, I ;
Vrang, L ;
Unge, T ;
Samuelsson, B ;
Hallberg, A .
JOURNAL OF MEDICINAL CHEMISTRY, 1999, 42 (19) :3835-3844
[3]   Design and synthesis of new potent C2-symmetric HIV-1 protease inhibitors.: Use of L-mannaric acid as a peptidomimetic scaffold [J].
Alterman, M ;
Björsne, M ;
Mühlman, A ;
Classon, B ;
Kvarnström, I ;
Danielson, H ;
Markgren, PO ;
Nillroth, U ;
Unge, T ;
Hallberg, A ;
Samuelsson, B .
JOURNAL OF MEDICINAL CHEMISTRY, 1998, 41 (20) :3782-3792
[4]   Cyclic sulfamide HIV-1 protease inhibitors, with sidechains spanning from P2/P2′ to P1/P1′ [J].
Ax, A ;
Schaal, W ;
Vrang, L ;
Samuelsson, B ;
Hallberg, A ;
Karlén, A .
BIOORGANIC & MEDICINAL CHEMISTRY, 2005, 13 (03) :755-764
[5]   Unexpected binding mode of a cyclic sulfamide HIV-1 protease inhibitor [J].
Backbro, K ;
Lowgren, S ;
Osterlund, K ;
Atepo, J ;
Unge, T ;
Hulten, J ;
Bonham, NM ;
Schaal, W ;
Karlen, A ;
Hallberg, A .
JOURNAL OF MEDICINAL CHEMISTRY, 1997, 40 (06) :898-902
[6]   Four plasmepsins are active in the Plasmodium falciparum food vacuole, including a protease with an active-site histidine [J].
Banerjee, R ;
Liu, J ;
Beatty, W ;
Pelosof, L ;
Klemba, M ;
Goldberg, DE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (02) :990-995
[7]  
Baxendale IR, 2007, MICROWAVE ASSISTED ORGANIC SYNTHESIS, P133
[8]   New aza-dipeptide analogues as potent and orally absorbed HIV-1 protease inhibitors:: Candidates for clinical development [J].
Bold, G ;
Fässler, A ;
Capraro, HG ;
Cozens, R ;
Klimkait, T ;
Lazdins, J ;
Mestan, J ;
Poncioni, B ;
Rösel, J ;
Stover, D ;
Tintelnot-Blomley, M ;
Acemoglu, F ;
Beck, W ;
Boss, E ;
Eschbach, M ;
Hürlimann, T ;
Masso, E ;
Roussel, S ;
Ucci-Stoll, K ;
Wyss, D ;
Lang, R .
JOURNAL OF MEDICINAL CHEMISTRY, 1998, 41 (18) :3387-3401
[9]  
Breman JG, 2001, AM J TROP MED HYG, V64, P1
[10]   HIV-1 protease: mechanism and drug discovery [J].
Brik, A ;
Wong, CH .
ORGANIC & BIOMOLECULAR CHEMISTRY, 2003, 1 (01) :5-14