The effect of forest management on trace gas exchange at the pedosphere-atmosphere interface in beech (Fagus sylvatica L.) forests stocking on calcareous soils

被引:31
作者
Dannenmann, Michael
Gasche, Rainer
Ledebuhr, Astrid
Holst, Thomas
Mayer, Helmut
Papen, Hans
机构
[1] Forschungszentrum Karlsruhe, IMK IFU, D-82467 Garmisch Partenkirchen, Germany
[2] Univ Freiburg, Inst Meteorol, D-79085 Freiburg, Germany
关键词
beech; Fagus sylvatica; forest soils; nitrous oxide; methane; soil respiration; forest management; thinning; barometric process separation; closed chamber technique;
D O I
10.1007/s10342-006-0153-3
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
The effect of forest management (thinning) on in situ carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) trace gas exchange between soil and atmosphere was studied in three consecutive years at three beech forest sites, which differ in aspect [southwest (SW), northeast (NE), northwest (NW)]. At all sites adjacent thinning plots ("T") and untreated control plots ("C") were established. Measurements at the SW and NE sites covered the years 4-6 after thinning while at the NW site measurements covered the year before and the first 2 years after thinning. Mean N2O fluxes were < 3 mu g N2O-N m(-2) h(-1) at all plots except for the newly thinned NWT plot. CH4 uptake was rather low, too. Very low CH4 oxidation rates during dry periods are explained by physiological drought stress for CH4 oxidizers. Heterotrophic litter decomposition constitutes the largest part of total soil respiration. On the whole, no significant positive or negative effects of the silvicultural treatment on the magnitude of CO2-, CH4- and N2O-trace gas exchange could be observed at the SW site 4-6 years after thinning. Also at the NE site, no effects of thinning on CO2 and N2O fluxes could be demonstrated. However, at this site a significant moisture-induced lower CH4 uptake could be shown. At the NW site forest management led to a dramatic increase in N2O emissions in the first two summers after thinning and to distinct effects on CO2 emissions and CH4 uptake in the first year after the felling. The unambiguous effects of thinning at the NW site are mainly related to higher C input by dead residues leading to enhanced mineralization activity, to a shift in the competition for nutrients favoring microorganisms as compared to trees and to changes in the soil water availability at the thinned plot. Considering the data obtained from the NE and SW site we expect that with the development of an understorey vegetation at the NW site the observed effects on the magnitude of trace gas exchange due to thinning will continue to decline in the following years. Our results implicate that it is indispensable to take account of the effects of forest management in order to accurately calculate trace gas emission inventories for the investigated forest ecosystem in case thinning took place immediately before.
引用
收藏
页码:331 / 346
页数:16
相关论文
共 60 条
[1]   SPATIAL AND SEASONAL NITROUS-OXIDE AND METHANE FLUXES IN DANISH FOREST-ECOSYSTEMS, GRASSLAND-ECOSYSTEMS, AND AGROECOSYSTEMS [J].
AMBUS, P ;
CHRISTENSEN, S .
JOURNAL OF ENVIRONMENTAL QUALITY, 1995, 24 (05) :993-1001
[2]  
[Anonymous], 2011, Workshop Report of the Intergovernmental Panel on Climate Change Workshop on Impacts of Ocean Acidification on Marine Biology and Ecosystems
[3]   The influence of soil gas transport properties on methane oxidation in a selection of northern European soils [J].
Ball, BC ;
Smith, KA ;
Klemedtsson, L ;
Brumme, R ;
Sitaula, BK ;
Hansen, S ;
Prieme, A ;
MacDonald, J ;
Horgan, GW .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1997, 102 (D19) :23309-23317
[4]  
BENDER M, 1994, BIOGEOCHEMISTRY, V27, P97, DOI 10.1007/BF00002813
[5]   Methane oxidation in soils with different textures and land use [J].
Boeckx, P ;
VanCleemput, O ;
Villaralvo, I .
NUTRIENT CYCLING IN AGROECOSYSTEMS, 1997, 49 (1-3) :91-95
[6]   Drying and wetting effects on carbon dioxide release from organic horizons [J].
Borken, W ;
Davidson, EA ;
Savage, K ;
Gaudinski, J ;
Trumbore, SE .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2003, 67 (06) :1888-1896
[7]   Carbon dioxide and methane fluxes by a forest soil under laboratory-controlled moisture and temperature conditions [J].
Bowden, RD ;
Newkirk, KM ;
Rullo, GM .
SOIL BIOLOGY & BIOCHEMISTRY, 1998, 30 (12) :1591-1597
[8]   N2O emission from tropical forest soils of Australia [J].
Breuer, L ;
Papen, H ;
Butterbach-Bahl, K .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2000, 105 (D21) :26353-26367
[9]   Hierarchical control on nitrous oxide emission in forest ecosystems [J].
Brumme, R ;
Borken, W ;
Finke, S .
GLOBAL BIOGEOCHEMICAL CYCLES, 1999, 13 (04) :1137-1148
[10]   MECHANISMS OF CARBON AND NUTRIENT RELEASE AND RETENTION IN BEECH FOREST GAPS .3. ENVIRONMENTAL-REGULATION OF SOIL RESPIRATION AND NITROUS-OXIDE EMISSIONS ALONG A MICROCLIMATIC GRADIENT [J].
BRUMME, R .
PLANT AND SOIL, 1995, 168 :593-600