Effects of calcination temperature on the microstructures and photocatalytic activity of titanate nanotubes

被引:366
作者
Yu, JG
Yu, HG
Cheng, B
Trapalis, C
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[2] Natl Ctr Sci Res Demokritos, Inst Sci Mat, Attikis 15310, Greece
基金
中国国家自然科学基金;
关键词
calcination; TiO2; titanate nanotubes; microstructures; photocatalytic activity;
D O I
10.1016/j.molcata.2006.01.003
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Titanate nanotubes were prepared via a hydrothermal treatment of TiO2 powders (P25) in a I OM NaOH solution at 150 degrees C for 48h and then calcined at various temperatures. The as-prepared titanate nanotubes before and after calcination were characterized with XRD, TEM, HRTEM, SEM, FESEM, and nitrogen adsorption-desorption isotherms. The photocatalytic activity of the as-prepared samples was evaluated by photocatalytic oxidation of acetone in air. The effects of calcination temperature on the phase structure, crystallite size, morphology, specific surface area, pore structures and photocatalytic activity of the titanate nanotubes were investigated. The results indicated that at 400 to 600 degrees C, the calcined nanotube samples showed a higher photocatalytic activity than Degussa P25. Especially, at 400 and 500 degrees C, the photocatalytic activity of the calcined nanotubes exceeded that of P25 by a factor of about 3.0 times. This could be attributed to the fact that the former had a larger specific surface area and pore volume. With further increase in the calcination temperature from 700 to 900 degrees C, the photocatalytic activity of the calcined nanotube samples greatly decreased due to the formation of rutile phase, the sintering and growth of TiO2 crystallites and the decrease of specific surface area and pore volume. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:135 / 142
页数:8
相关论文
共 43 条
[1]   TiO2-B nanowires [J].
Armstrong, AR ;
Armstrong, G ;
Canales, J ;
Bruce, PG .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (17) :2286-2288
[2]   The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes [J].
Bavykin, DV ;
Parmon, VN ;
Lapkin, AA ;
Walsh, FC .
JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (22) :3370-3377
[3]  
Chen Q, 2002, ADV MATER, V14, P1208, DOI 10.1002/1521-4095(20020903)14:17<1208::AID-ADMA1208>3.0.CO
[4]  
2-0
[5]   Highly porous (TiO2-SiO2-TeO2)/Al2O3/TiO2 composite nanostructures on glass with enhanced photocatalysis fabricated by anodization and sol-gel process [J].
Chu, SZ ;
Inoue, S ;
Wada, K ;
Li, D ;
Haneda, H ;
Awatsu, S .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (27) :6586-6589
[6]   Preparation and structure analysis of titanium oxide nanotubes [J].
Du, GH ;
Chen, Q ;
Che, RC ;
Yuan, ZY ;
Peng, LM .
APPLIED PHYSICS LETTERS, 2001, 79 (22) :3702-3704
[7]   HETEROGENEOUS PHOTOCATALYSIS [J].
FOX, MA ;
DULAY, MT .
CHEMICAL REVIEWS, 1993, 93 (01) :341-357
[8]   ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE [J].
FUJISHIMA, A ;
HONDA, K .
NATURE, 1972, 238 (5358) :37-+
[9]   ENVIRONMENTAL APPLICATIONS OF SEMICONDUCTOR PHOTOCATALYSIS [J].
HOFFMANN, MR ;
MARTIN, ST ;
CHOI, WY ;
BAHNEMANN, DW .
CHEMICAL REVIEWS, 1995, 95 (01) :69-96
[10]   Formation of titanium oxide nanotube [J].
Kasuga, T ;
Hiramatsu, M ;
Hoson, A ;
Sekino, T ;
Niihara, K .
LANGMUIR, 1998, 14 (12) :3160-3163