Factorized steady states in mass transport models

被引:85
作者
Evans, MR
Majumdar, SN
Zia, RKP
机构
[1] Univ Edinburgh, Sch Phys, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Univ Paris 11, Lab Phys Theor & Modeles Stat, F-91405 Orsay, France
[3] Univ Toulouse 3, Phys Theor Lab, UMR C5152, CNRS, F-31062 Toulouse, France
[4] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA
[5] Virginia Tech, Ctr Stochast Proc Sci & Engn, Blacksburg, VA 24061 USA
[6] Univ Duisburg, FB Phys, D-45117 Essen, Germany
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2004年 / 37卷 / 25期
基金
美国国家科学基金会;
关键词
D O I
10.1088/0305-4470/37/25/L02
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a class of mass transport models where mass is transported in a preferred direction around a one-dimensional periodic lattice and is globally conserved. The model encompasses both discrete and continuous masses and parallel and random sequential dynamics and includes models such as the zero-range process and asymmetric random average process as special cases. We derive a necessary and sufficient condition for the steady state to factorize, which takes a rather simple form.
引用
收藏
页码:L275 / L280
页数:6
相关论文
共 17 条
[1]   Condensation transitions in a one-dimensional zero-range process with a single defect site [J].
Angel, AG ;
Evans, MR ;
Mukamel, D .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[2]   Condensation in the Backgammon model [J].
Bialas, P ;
Burda, Z ;
Johnston, D .
NUCLEAR PHYSICS B, 1997, 493 (03) :505-516
[3]   Model for force fluctuations in bead packs [J].
Coppersmith, SN ;
Liu, C ;
Majumdar, S ;
Narayan, O ;
Witten, TA .
PHYSICAL REVIEW E, 1996, 53 (05) :4673-4685
[4]   Phase transition in two species zero-range process [J].
Evans, MR ;
Hanney, T .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (28) :L441-L447
[5]   Bose-Einstein condensation is disordered exclusion models and relation to traffic flow [J].
Evans, MR .
EUROPHYSICS LETTERS, 1996, 36 (01) :13-18
[6]   Exact steady states of disordered hopping particle models with parallel and ordered sequential dynamics [J].
Evans, MR .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (16) :5669-5685
[7]   Phase transitions in one-dimensional nonequilibrium systems [J].
Evans, MR .
BRAZILIAN JOURNAL OF PHYSICS, 2000, 30 (01) :42-57
[8]   Dynamics of condensation in zero-range processes [J].
Godrèche, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (23) :6313-6328
[9]   Condensation in the zero range process:: Stationary and dynamical properties [J].
Grosskinsky, S ;
Schütz, GM ;
Spohn, H .
JOURNAL OF STATISTICAL PHYSICS, 2003, 113 (3-4) :389-410
[10]   Criterion for phase separation in one-dimensional driven systems -: art. no. 035702 [J].
Kafri, Y ;
Levine, E ;
Mukamel, D ;
Schütz, GM ;
Török, J .
PHYSICAL REVIEW LETTERS, 2002, 89 (03) :357021-357024