Estimation of tool wear during CNC milling using neural network-based sensor fusion

被引:279
作者
Ghosh, N. [1 ]
Ravi, Y. B.
Patra, A.
Mukhopadhyay, S.
Paul, S.
Mohanty, A. R.
Chattopadhyay, A. B.
机构
[1] Univ Calif Riverside, Dept Elect Engn, Riverside, CA 92521 USA
[2] GE Co, John F Welch Technol Ctr, Bangalore 560066, Karnataka, India
[3] Indian Inst Technol, Dept Elect Engn, Kharagpur 721302, W Bengal, India
[4] Indian Inst Technol, Dept Mech Engn, Kharagpur 721302, W Bengal, India
关键词
data fusion; back propagation neural network; tool condition monitoring; signal segmentation; feature space filtering; outliers;
D O I
10.1016/j.ymssp.2005.10.010
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Cutting tool wear degrades the product quality in manufacturing processes. Monitoring tool wear value online is therefore needed to prevent degradation in machining quality. Unfortunately there is no direct way of measuring the tool wear online. Therefore one has to adopt an indirect method wherein the tool wear is estimated from several sensors measuring related process variables. In this work, a neural network-based sensor fusion model has been developed for tool condition monitoring (TCM). Features extracted from a number of machining zone signals, namely cutting forces, spindle vibration, spindle current, and sound pressure level have been fused to estimate the average flank wear of the main cutting edge. Novel strategies such as, signal level segmentation for temporal registration, feature space filtering, outlier removal, and estimation space filtering have been proposed. The proposed approach has been validated by both laboratory and industrial implementations. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:466 / 479
页数:14
相关论文
共 29 条
[1]   Tool condition monitoring using artificial intelligence methods [J].
Balazinski, M ;
Czogala, E ;
Jemielniak, K ;
Leski, J .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2002, 15 (01) :73-80
[2]  
Bose NK., 1995, NEURAL NETWORK FUNDA
[3]   Data fusion neural network for tool condition monitoring in CNC milling machining [J].
Chen, SL ;
Jen, YW .
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2000, 40 (03) :381-400
[4]   Evaluation of wear of turning carbide inserts using neural networks [J].
Das, S ;
Roy, R ;
Chattopadhyay, AB .
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 1996, 36 (07) :789-797
[5]   Neural network solutions to the tool condition monitoring problem in metal cutting - A critical review of methods [J].
Dimla, DE ;
Lister, PM ;
Leighton, NJ .
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 1997, 37 (09) :1219-1241
[6]   On-line metal cutting tool condition monitoring. I: force and vibration analyses [J].
Dimla, DE ;
Lister, PM .
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2000, 40 (05) :739-768
[7]   On-line metal cutting tool condition monitoring. II: tool-state classification using multi-layer perceptron neural networks [J].
Dimla, DE ;
Lister, PM .
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2000, 40 (05) :769-781
[8]   Sensor signals for tool-wear monitoring in metal cutting operations - a review of methods [J].
Dimla, DE .
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2000, 40 (08) :1073-1098
[9]   Signal understanding and tool condition monitoring [J].
Du, R .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 1999, 12 (05) :585-597
[10]   Assessment of machining features for tool condition monitoring in face milling using an artificial neural network [J].
Dutta, RK ;
Kiran, G ;
Paul, S ;
Chattopadhyay, AB .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2000, 214 (07) :535-546