Macrophages are known to adhere to a plastic dish via beta(2) integrin (CR3) and scavenger receptors. Although their functions such as phagocytosis, endocytosis, and nitric oxide production have been investigated on adherent macrophages in vitro , very little is known about intracellular signals triggered by adhesion to a plastic dish. Recently we reported that the mRNA level of krox-20/egr-2 was significantly increased in rat alveolar macrophages following exposure to fibrous titanium dioxide particles. In the present study we report that up-regulation of krox-20/egr-2 gene expression following adhesion to a plastic dish and homophilic adhesion in rat alveolar macrophages and rat macrophage cell line, NR8383. The mRNA level of krox-20/egr-2 increased with a peak 1 hr after adhesion to a plastic dish in both cell types. Piceatannol inhibited tyrosine-phosphorylation of Syk and decreased both adhesion and krox-20/egr-2 mRNA level. In contrast staurosporine, a serine/threonine kinase inhibitor, increased adherence of macrophages and yet prohibited the adhesion-dependent increase in krox-20/egr-2 gene expression. When NR8383 cells are cultured in suspension, the cells aggregated naturally and produced cell clumps. The mRNA level of krox-20/egr-2 also increased in response to the homophilic intercellular adhesion. The increased mRNA level of krox-20/egr-2 was not caused by inflammatory stimuli, because lipopolysaccharide did not affect the aggregation-dependent up-regulation of krox-20/egr-2 gene. The up-regulation of krox-20/egr-2 gene due to the homophilic cell aggregation was also inhibited either by piceatannol or staurosporine. Those results suggest that krox-20/egr-2 gene expression is triggered by sensing non-specific and homophilic cellular adhesion and the following phosphorylation of signal transducing proteins including Syk and staurosporine-inhibitable kinases.