Probing the structural basis for the difference in thermostability displayed by family 10 xylanases

被引:36
作者
Xie, Hefang [1 ]
Flint, James [1 ]
Vardakou, Maria [1 ]
Lakey, Jeremy H. [1 ]
Lewis, Richard J. [1 ]
Gilbert, Harry J. [1 ]
Dumon, Claire [1 ]
机构
[1] Newcastle Univ, Sch Med, Inst Cell & Mol Biosci, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England
基金
中国国家自然科学基金;
关键词
xylanase; thermostability; glycoside hydrolase;
D O I
10.1016/j.jmb.2006.05.002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Thermostability is an important property of industrially significant hydrolytic enzymes: understanding the structural basis for this attribute will underpin the future biotechnological exploitation of these biocatalysts. The Cellvibrio family 10 (GH10) xylanases display considerable sequence identity but exhibit significant differences in thermostability; thus, these enzymes represent excellent models to examine the structural basis for the variation in stability displayed by these glycoside hydrolases. Here, we have subjected the intracellular Cellvibrio mixtus xylanase CmXyn10B to forced protein evolution. Error-prone PCR and selection identified a double mutant, A334V/G348D, which confers an increase in thermostability. The C higher than the wild-type enzyme and, at 55 mutant has a T-m 8 degrees C, the first-order rate constant for thermal inactivation of A334V/G348D is 4.1 x 10(-4) min(-1), compared to a value of 1.6 x 10(-1) min(-1) for the wild-type enzyme. The introduction of the N to C-terminal disulphide bridge into A334V/G348D, which increases the thermostability of wild-type CmXyn10B, conferred a further similar to 2 degrees C increase in the T-m of the double mutant. The crystal structure of A334V/G348D showed that the introduction of Val334 fills a cavity within the hydrophobic core of the xylanase, increasing the number of van der Waals interactions with the surrounding aromatic residues, while O-delta 1 of Asp348 makes an additional hydrogen bond with the amide of Gly344, and O-delta 2 interacts with the arabinofuranose side-chain of the xylose moiety at the -2 subsite. To investigate the importance of xylan decorations in productive substrate binding, the activity of wild-type CmXyn10B, the mutant A334V/G348D, and several other GH10 xylanases against xylotriose and xylotriose containing an arabinofuranose side-chain (AX(3)) was assessed. The enzymes were more active against AX(3) than xylotriose, providing evidence that the arabinose side-chain makes a generic contribution to substrate recognition by GH10 xylanases. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:157 / 167
页数:11
相关论文
共 34 条
[1]   The use of forced protein evolution to investigate and improve stability of family 10 xylanases -: The production of Ca2+-independent stable xylanases [J].
Andrews, SR ;
Taylor, EJ ;
Pell, G ;
Vincent, F ;
Ducros, VMA ;
Davies, GJ ;
Lakey, JH ;
Gilbert, HJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (52) :54369-54379
[2]   STABILIZATION OF XYLANASE BY RANDOM MUTAGENESIS [J].
ARASE, A ;
YOMO, T ;
URABE, I ;
HATA, Y ;
KATSUBE, Y ;
OKADA, H .
FEBS LETTERS, 1993, 316 (02) :123-127
[3]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[4]   SUBSTRATE-BINDING SITE OF ENDO-1,4-BETA-XYLANASE OF THE YEAST CRYPTOCOCCUS-ALBIDUS [J].
BIELY, P ;
KRATKY, Z ;
VRSANSKA, M .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1981, 119 (03) :559-564
[5]   MECHANISMS OF SUBSTRATE DIGESTION BY ENDO-1,4-BETA-XYLANASE OF CRYPTOCOCCUS-ALBIDUS LYSOZYME-TYPE PATTERN OF ACTION [J].
BIELY, P ;
VRSANSKA, M ;
KRATKY, Z .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1981, 119 (03) :565-571
[6]   FREE R-VALUE - A NOVEL STATISTICAL QUANTITY FOR ASSESSING THE ACCURACY OF CRYSTAL-STRUCTURES [J].
BRUNGER, AT .
NATURE, 1992, 355 (6359) :472-475
[7]   Key residues in subsite F play a critical role in the activity of Pseudomonas fluorescens subspecies cellulosa xylanase A against xylooligosaccharides but not against highly polymeric substrates such as xylan [J].
Charnock, SJ ;
Lakey, JH ;
Virden, R ;
Hughes, N ;
Sinnott, ML ;
Hazlewood, GP ;
Pickersgill, R ;
Gilbert, HJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (05) :2942-2951
[8]   THE PROPERTIES OF FUNGAL AND BACTERIAL CELLULASES WITH COMMENT ON THEIR PRODUCTION AND APPLICATION [J].
COUGHLAN, MP .
BIOTECHNOLOGY & GENETIC ENGINEERING REVIEWS, 1985, 3 :39-109
[9]   Nomenclature for sugar-binding subsites in glycosyl hydrolases [J].
Davies, GJ ;
Wilson, KS ;
Henrissat, B .
BIOCHEMICAL JOURNAL, 1997, 321 :557-559
[10]  
EMSLEY P, 2004, ACTA CRYSTALLOGR D, V49, P129