A Dual Mass Flux Framework for Boundary Layer Convection. Part I: Transport

被引:115
作者
Neggers, Roel A. J. [1 ]
Koehler, Martin [1 ]
Beljaars, Anton C. M. [1 ]
机构
[1] European Ctr Medium Range Weather Forecasts, Reading RG2 9AX, Berks, England
关键词
SHALLOW CUMULUS CONVECTION; LARGE-EDDY SIMULATION; TOPPED MIXED LAYERS; ATMOSPHERIC RADIATION; HEAT FLUX; MODEL; CLOUD; PARAMETERIZATION; BUDGETS; SCHEME;
D O I
10.1175/2008JAS2635.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This study considers the question of what is the least complex bulk mass flux framework that can still conceptually reproduce the smoothly varying coupling between the shallow convective cloud layer and the subcloud mixed layer. To this end, the model complexity of the classic single bulk mass flux scheme is enhanced. Inspired by recent large-eddy simulation results, the authors argue that two relatively minor but key conceptual modifications are already sufficient to achieve this goal: (i) retaining a dry transporting updraft in the moist limit and (ii) applying continuous updraft area partitioning to this dual mass flux (DualM) framework. The dry updraft represents all internal mixed layer updrafts that terminate near the mixed layer top, whereas the moist updraft represents all updrafts that condense and rise out of the mixed layer as buoyant cumulus clouds. The continuous area partitioning between the dry and moist updraft is a function of moist convective inhibition above the mixed layer top. Updraft initialization is a function of the updraft area fraction and is therefore consistent with the updraft definition. It is argued that the model complexity thus enhanced is sufficient to allow reproduction of various phenomena involved in the cloud subcloud coupling, namely ( i) dry countergradient transport within the mixed layer that is independent of the moist updraft, ( ii) soft triggering of moist convective flux throughout the boundary layer, and (iii) a smooth response to smoothly varying forcings, including the reproduction of gradual transitions to and from shallow cumulus convection. The DualM framework is evaluated by implementing in the Eddy Diffusivity Mass Flux (EDMF) boundary layer scheme of the ECMWF's Integrated Forecasting System. Single column model experiments are evaluated against large-eddy simulation results for a range of different cases that span a broad parameter space of cloud-subcloud coupling intensities. The results illustrate that also in numerical practice the DualM framework can reproduce gradual transitions to and from shallow cumulus convection. Model behavior is further explored through experiments in which model complexity is purposely reduced, thus mimicking a single bulk updraft setup. This gives more insight into the new model-internal interactions and explains the obtained case results.
引用
收藏
页码:1465 / 1487
页数:23
相关论文
共 94 条
[1]   The Atmospheric Radiation Measurement program [J].
Ackerman, TP ;
Stokes, GM .
PHYSICS TODAY, 2003, 56 (01) :38-44
[2]  
[Anonymous], 1971, Journal of the Meteorological Society of Japan. Ser. II, DOI DOI 10.2151/JMSJ1965.49A.0_744
[3]  
Arakawa A, 2004, J CLIMATE, V17, P2493, DOI 10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO
[4]  
2
[5]  
AUGSTEIN E, 1973, MON WEATHER REV, V101, P101, DOI 10.1175/1520-0493(1973)101<0101:MAETIA>2.3.CO
[6]  
2
[7]  
Augstein E., 1974, Boundary-Layer Meteorology, V6, P129, DOI 10.1007/BF00232480
[8]   NON-PRECIPITATING CUMULUS CONVECTION AND ITS PARAMETERIZATION [J].
BETTS, AK .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1973, 99 (419) :178-196
[9]  
Bretherton CS, 2004, MON WEATHER REV, V132, P864, DOI 10.1175/1520-0493(2004)132<0864:ANPFSC>2.0.CO
[10]  
2