Semiclassical dimensions, quantum groups and the Cantorian manifold

被引:6
作者
El Naschie, MS [1 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 9EW, England
关键词
D O I
10.1016/S0960-0779(99)00020-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a semi classical dimension for the epsilon((infinity)) manifold and draw attention to some instructive connections between quantum groups, KAM Theorem, the signature of four manifolds and the dimension of the nuclear spacetime of quantum physics. It is shown that while quantum space dimension is 4 + phi(3) for d(c)((0)) = phi where phi = (root 5 - 1)/2 we have a quantum-classical transition to exactly four dimensions when d(c)((0)) --> 1. Finally we have introduced a new quantum-classical spacetime dimension S-QC which gives the obvious result S-QC = 3 for d(c)((0)) = 1. Subsequently we show how spin 1/2 and time arise in a natural way from a fluctuating space filling three dimensional space. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1137 / 1144
页数:8
相关论文
共 20 条
[1]  
Adams C. C., 1994, KNOT BOOK
[2]  
[Anonymous], U CHAOS
[3]  
Argyris J., 1994, ERFORSCHUNG CHAOS
[4]  
Connes A., 1994, NONCOMMUTATIVE GEOME
[5]  
Donaldon S.K., 1990, OXFORD MATH MONOGRAP
[6]   COBE satellite measurement, hyperspheres, superstrings and the dimension of spacetime [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 1998, 9 (08) :1445-1471
[8]   AVERAGE SYMMETRY, STABILITY AND ERGODICITY OF MULTIDIMENSIONAL CANTOR SETS [J].
ELNASCHIE, MS .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1994, 109 (02) :149-157
[9]  
ELNASCHIE MS, 1999, NUCL SPACETIME THEOR, V10, P567
[10]  
Havlin S., 1991, FRACTALS DISORDERED, P51