GMRES on (nearly) singular systems

被引:139
作者
Brown, PN
Walker, HF
机构
[1] UTAH STATE UNIV, DEPT MATH & STAT, LOGAN, UT 84322 USA
[2] LAWRENCE LIVERMORE NATL LAB, DIV COMP & MATH RES, LIVERMORE, CA 94550 USA
[3] RICE UNIV, CTR RES PARALLEL COMPUTAT, HOUSTON, TX 77251 USA
关键词
GMRES method; residual minimizing methods; Krylov subspace methods; iterative linear algebra methods; singular or ill-conditioned linear systems;
D O I
10.1137/S0895479894262339
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the behavior of the GMRES method for solving a linear system Ax = b when A is singular or nearly so, i.e., ill conditioned. The (near) singularity of A may or may not affect the performance of GMRES, depending on the nature of the system and the initial approximate solution. For singular A, we give conditions under which the GMRES iterates converge safely to a least-squares solution or to the pseudoinverse solution. These results also apply to any residual minimizing Krylov subspace method that is mathematically equivalent to GMRES. A practical procedure is outlined for efficiently and reliably detecting singularity or ill conditioning when it becomes a threat to the performance of GMRES.
引用
收藏
页码:37 / 51
页数:15
相关论文
共 19 条
[1]  
Anderson E., 1992, LAPACK User's Guide
[2]  
BAI Z, 1991, 9103 U KENT DEP MATH
[3]  
BARKER VA, 1989, COMM STAT STOCHASTIC, V5, P335, DOI DOI 10.1080/15326348908807115
[4]   INCREMENTAL CONDITION ESTIMATION [J].
BISCHOF, CH .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1990, 11 (02) :312-322
[5]  
BISCHOF CH, 1991, CS91133 U TENN COMP
[6]   A THEORETICAL COMPARISON OF THE ARNOLDI AND GMRES ALGORITHMS [J].
BROWN, PN .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1991, 12 (01) :58-78
[7]   On the Use of Two QMR Algorithms for Solving Singular Systems and Applications in Markov Chain Modeling [J].
Freund, Roland W. ;
Hochbruck, Marlis .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 1994, 1 (04) :403-420
[8]   A TRANSPOSE-FREE QUASI-MINIMAL RESIDUAL ALGORITHM FOR NON-HERMITIAN LINEAR-SYSTEMS [J].
FREUND, RW .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (02) :470-482
[9]   QMR - A QUASI-MINIMAL RESIDUAL METHOD FOR NON-HERMITIAN LINEAR-SYSTEMS [J].
FREUND, RW ;
NACHTIGAL, NM .
NUMERISCHE MATHEMATIK, 1991, 60 (03) :315-339
[10]  
Freund RW., 1992, ACTA NUMER, V1, P57