Eigenvalues of large sample covariance matrices of spiked population models

被引:406
作者
Baik, Jinho [1 ]
Silverstein, Jack W.
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
基金
美国国家科学基金会;
关键词
eigenvalues; sample covariance matrices; spiked population models; almost sure limits; non-null case;
D O I
10.1016/j.jmva.2005.08.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a spiked population model, proposed by Johnstone, in which all the population eigen-values are one except for a few fixed eigenvalues. The question is to determine how the sample eigenvalues depend on the non-unit population ones when both sample size and population size become large. This paper completely determines the almost sure limits of the sample eigenvalues in a spiked model for a general class of samples. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:1382 / 1408
页数:27
相关论文
共 31 条
[1]  
[Anonymous], 2003, THESIS ECOLE POLYTEC
[2]  
Bai ZD, 1999, STAT SINICA, V9, P611
[3]  
Bai ZD, 1998, ANN PROBAB, V26, P316
[4]  
Bai ZD, 1999, ANN PROBAB, V27, P1536
[5]   LIMIT OF THE SMALLEST EIGENVALUE OF A LARGE DIMENSIONAL SAMPLE COVARIANCE-MATRIX [J].
BAI, ZD ;
YIN, YQ .
ANNALS OF PROBABILITY, 1993, 21 (03) :1275-1294
[6]  
BAIK J, 2005, IN PRESS ANN PROBAB
[7]  
BAIK J, PAINLEVE FORMULAS LI
[8]   THE SPECTRUM EDGE OF RANDOM-MATRIX ENSEMBLES [J].
FORRESTER, PJ .
NUCLEAR PHYSICS B, 1993, 402 (03) :709-728
[9]   A LIMIT-THEOREM FOR THE NORM OF RANDOM MATRICES [J].
GEMAN, S .
ANNALS OF PROBABILITY, 1980, 8 (02) :252-261
[10]   PENALIZED DISCRIMINANT-ANALYSIS [J].
HASTIE, T ;
BUJA, A ;
TIBSHIRANI, R .
ANNALS OF STATISTICS, 1995, 23 (01) :73-102