Extent and direction of ghrelin transport across the blood-brain barrier is determined by its unique primary structure

被引:524
作者
Banks, WA
Tschöp, M
Robinson, SM
Heiman, ML
机构
[1] Vet Affairs Med Ctr, Ctr Geriatr Res Educ & Clin, St Louis, MO 63106 USA
[2] St Louis Univ, Sch Med, Dept Internal Med, Div Geriatr, St Louis, MO USA
[3] Eli Lilly & Co, Lilly Res Labs, Indianapolis, IN 46285 USA
关键词
D O I
10.1124/jpet.102.034827
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The novel hormone ghrelin is a potent orexigen that may counterbalance leptin. Ghrelin is the only secreted molecule requiring post-translational acylation with octanoic acid to ensure bioactivity. Ghrelin, predominantly derived from the stomach, may target neuroendocrine networks within the central nervous system (CNS) to regulate energy homeostasis. This would require ghrelin to cross the blood-brain barrier (BBB). In mice, we examined whether ghrelin crosses the BBB and whether its lipophilic side chain is involved in this process. We found that saturable systems transported human ghrelin from brain-to-blood and from blood-to-brain. Mouse ghrelin, differing from human ghrelin by two amino acids, was a substrate for the brain-to-blood but not for the blood-to-brain transporter and so entered the brain to a far lesser degree. des-Octanoyl ghrelin entered the brain by nonsaturable transmembrane diffusion and was sequestered once within the CNS. In summary, we show that ghrelin transport across the BBB is a complex, highly regulated bidirectional process. The direction and extent of passage are determined by the primary structure of ghrelin, defining a new role for the unique post-translational octanoylation.
引用
收藏
页码:822 / 827
页数:6
相关论文
共 29 条
[1]   Endocrine activities of ghrelin, a natural growth hormone secretagogue (GHS), in humans: Comparison and interactions with hexarelin, a nonnatural peptidyl GHS, and GH-releasing hormone [J].
Arvat, E ;
Maccario, M ;
Di Vito, L ;
Broglio, F ;
Benso, A ;
Gottero, C ;
Papotti, M ;
Muccioli, G ;
Dieguez, C ;
Casanueva, FF ;
Deghenghi, R ;
Camanni, F ;
Ghigo, E .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2001, 86 (03) :1169-1174
[2]  
Banks W A, 1990, Adv Exp Med Biol, V274, P59
[3]   Leptin enters the brain by a saturable system independent of insulin [J].
Banks, WA ;
Kastin, AJ ;
Huang, WT ;
Jaspan, JB ;
Maness, LM .
PEPTIDES, 1996, 17 (02) :305-311
[4]   Impaired transport of leptin across the blood-brain barrier in obesity [J].
Banks, WA ;
DiPalma, CR ;
Farrell, CL .
PEPTIDES, 1999, 20 (11) :1341-1345
[5]  
BANKS WA, 1994, J NEUROCHEM, V62, P2404
[6]   Differential permeability of the blood-brain barrier to two pancreatic peptides: Insulin and amylin [J].
Banks, WA ;
Kastin, AJ .
PEPTIDES, 1998, 19 (05) :883-889
[7]  
BANKS WA, 1989, METHOD ENZYMOL, V168, P652
[8]   SATURABLE TRANSPORT OF INSULIN FROM PLASMA INTO THE CENTRAL-NERVOUS-SYSTEM OF DOGS IN-VIVO - A MECHANISM FOR REGULATED INSULIN DELIVERY TO THE BRAIN [J].
BAURA, GD ;
FOSTER, DM ;
PORTE, D ;
KAHN, SE ;
BERGMAN, RN ;
COBELLI, C ;
SCHWARTZ, MW .
JOURNAL OF CLINICAL INVESTIGATION, 1993, 92 (04) :1824-1830
[9]  
BENKS WA, 2000, AM J PHYSIOL, V278, pE1158
[10]   TRANSPORT OF ALPHA-AMINOISOBUTYRIC-ACID ACROSS BRAIN CAPILLARY AND CELLULAR MEMBRANES [J].
BLASBERG, RG ;
FENSTERMACHER, JD ;
PATLAK, CS .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1983, 3 (01) :8-32