共 44 条
Template Synthesis and Adsorption Properties of Hierarchically Porous Zirconium Titanium Oxides
被引:71
作者:
Drisko, Glenna L.
[2
]
Luca, Vittorio
[1
]
Sizgek, Erden
[1
]
Scales, Nicholas
[1
]
Caruso, Rachel A.
[2
]
机构:
[1] Australian Nucl Sci & Technol Org, Inst Mat Engn, Lucas Heights, NSW 2234, Australia
[2] Univ Melbourne, Sch Chem, Particulate Fluids Proc Ctr, Melbourne, Vic 3010, Australia
来源:
基金:
澳大利亚研究理事会;
美国国家科学基金会;
关键词:
ORGANICALLY MODIFIED SILICATES;
WASTE FORM CERAMICS;
X-RAY-DIFFRACTION;
METAL-OXIDES;
PART;
BINDING-SITES;
THIN-FILMS;
TIO2;
CONVERSION;
CATALYSTS;
D O I:
10.1021/la804030h
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
Hierarchical morphologies in metal oxides are advantageous for many applications, including controlled drug release, photocatalysis, catalysis, synthetic biomaterials, and adsorption and separation technologies. In this study, agarose gel has been used as a template to prepare zirconium titanium mixed oxide pellets with bimodal porosity. Sol-gel chemistry conducted within the agarose gel produced "coral-like" interconnected networks of oxide nanoparticles with controllable quantities of zirconium and titanium. The materials were characterized using N-2 sorption, extended X-ray absorption fine structure, X-ray diffraction, TEM, SEM, zeta potential, and thermogravimetric analysis (to measure surface hydroxyl group density). The oxides were then tested for the adsorption of vanadyl and vanadate to determine which Zr mole fraction exhibited the highest capacity and fastest kinetics. The material containing 25 mol % Zr exhibited the highest surface area (322 +/- 8 m(2)/g) of the compositions investigated and also displayed a superior adsorption rate and capacity. Vanadate adsorption occurred with faster kinetics than did vanadyl adsorption. A comparative study demonstrated that the macro/meso pore structure had improved transport properties over a monomodal mesopore structure of similar Zr/Ti composition. The faster vanadate adsorption kinetics is attributed to enhanced surface accessibility in a hierarchical material.
引用
收藏
页码:5286 / 5293
页数:8
相关论文