Exchange of pigment-binding amino acids in light-harvesting chlorophyll a/b protein

被引:55
作者
Yang, CH [1 ]
Kosemund, K [1 ]
Cornet, C [1 ]
Paulsen, H [1 ]
机构
[1] Univ Mainz, Inst Allgemeine Bot, D-55099 Mainz, Germany
关键词
D O I
10.1021/bi990738x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Four amino acids in the major light-harvesting chlorophyll (Chl) alb complex (LHCII) that are thought to coordinate Chi molecules have been exchanged with amino acids that presumably cannot bind Chl. Amino acids H68, Q131, Q197, and H212 are positioned in helixes B, C, A, and D, respectively, and, according to the LHCII crystal structure [Kuhlbrandt, W., et al. (1994) Nature 367, 614-621], coordinate the Chi molecules named a(5), b(6), a(3), and b(3). Moreover, a double mutant was analyzed carrying exchanges at positions E65 and H68, presumably affecting Chls a(4) and a(5). All mutant proteins could be reconstituted in vitro with pigments? although the thermal stability of the resulting mutant versions of recombinant LHCII varied significantly. All complexes reconstituted with the mutant proteins contained fewer chlorophyll molecules per two lutein molecules than complexes reconstituted with the wild-type protein. However, the chlorophyll-binding amino acids could not be unambiguously assigned to binding either chlorophyll a or b, as in most cases more than one chlorophyll molecule was lost due to the mutation. The changes in Chl stoichiometries suggest that in LHCII some chlorophyll positions can be filled with either Chl a or b. Only some of the point mutations in LHCII affected the ability of the apoprotein to assemble into trimeric LHCII upon insertion into isolated thylakoid membranes. Among these were exchanges of H68 with either F or L, suggesting that the stability of the LHCII trimer significantly depends on-this amino acid or the Chl molecule named a(5) that is attached to it and is located close to the center of the trimeric complex. The ion pair bridge between E65 and R185 in LHCII does nor appear to be essential for the proper folding of the protein.
引用
收藏
页码:16205 / 16213
页数:9
相关论文
共 30 条
[1]   RESOLUTION OF 16 TO 20 CHLOROPHYLL PROTEIN COMPLEXES USING A LOW IONIC-STRENGTH NATIVE GREEN GEL SYSTEM [J].
ALLEN, KD ;
STAEHELIN, LA .
ANALYTICAL BIOCHEMISTRY, 1991, 194 (01) :214-222
[2]  
AUCHINCLOSS AH, 1992, J BIOL CHEM, V267, P10439
[3]   CAROTENOID-BINDING PROTEINS OF PHOTOSYSTEM-II [J].
BASSI, R ;
PINEAU, B ;
DAINESE, P ;
MARQUARDT, J .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1993, 212 (02) :297-303
[4]   Novel aspects of chlorophyll a/b-binding proteins [J].
Bassi, R ;
Sandona, D ;
Croce, R .
PHYSIOLOGIA PLANTARUM, 1997, 100 (04) :769-779
[5]   INVITRO RECONSTITUTION OF A LIGHT-HARVESTING GENE-PRODUCT - DELETION MUTAGENESIS AND ANALYSES OF PIGMENT BINDING [J].
CAMMARATA, KV ;
SCHMIDT, GW .
BIOCHEMISTRY, 1992, 31 (10) :2779-2789
[6]   STRUCTURE AND EXPRESSION OF A PEA NUCLEAR GENE ENCODING A CHLOROPHYLL A B-BINDING POLYPEPTIDE [J].
CASHMORE, AR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1984, 81 (10) :2960-2964
[7]  
CHEN BW, 1994, BIOTECHNIQUES, V17, P657
[8]   PREDICTION OF PROTEIN CONFORMATION [J].
CHOU, PY ;
FASMAN, GD .
BIOCHEMISTRY, 1974, 13 (02) :222-245
[9]   A MOLECULAR MECHANISM FOR Q(E)-QUENCHING [J].
CROFTS, AR ;
YERKES, CT .
FEBS LETTERS, 1994, 352 (03) :265-270
[10]  
DAINESE P, 1991, J BIOL CHEM, V266, P8136