The significance of action potential bursting in the brain reward circuit

被引:135
作者
Cooper, DC [1 ]
机构
[1] Northwestern Univ, Inst Neurosci, Dept Neurobiol & Physiol, Evanston, IL 60208 USA
关键词
addiction; learning and memory; dopamine; motivation; bursting;
D O I
10.1016/S0197-0186(02)00068-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The brain reward circuit consists of specialized cortical and subcortical structural components that code for various cognitive aspects of goal-directed behavior. These components include the prefrontal cortex (PFC), amygdala (AMY), nucleus accumbens (Nac), subiculum (SUB) of the hippocampal formation, and the dopamine (DA) neurons in the ventral tegmental area (VTA). Both serial and parallel processing in the different components of the circuit code the various aspects of reward-related behavior. Individual neurons within each component have developed specialized intrinsic membrane properties that have led them to be typically defined as either single spiking or high frequency burst-firing neurons. However, a strict definition based on the output mode may not be appropriate. Under the right conditions, neurons can switch between bursting and single-spiking modes, therefore providing a conditional output state. The preferred mode of each individual neuron depends on a combination of different plastic neuronal properties such as, dendritic architecture, neuromodulation, intracellular calcium (Ca++) buffering, excitatory and inhibitory synaptic strength, and the spatial distribution and density of voltage and ligand-gated channels. It is likely that, in vivo, most neurons in the circuit, despite variations in intrinsic membrane properties, are conditional output neurons equipped with the versatility of switching between output modes under appropriate conditions. Bursting mode may be used to boost the gain of neural signaling of important or novel events by enhancing transmitter release and enhancing dendritic depolarization, thereby increasing synaptic potentiation. Conversely, single spiking mode may be used to dampen neuronal signaling and may be associated with habituation to unimportant events. Mode switching may provide flexibility to the circuit allowing different sets of neurons to conditionally code for the various aspects of reward-related memory and behavior. (C) 2002 Published by Elsevier Science Ltd.
引用
收藏
页码:333 / 340
页数:8
相关论文
共 99 条
[1]  
BERENDSE HW, 1992, J NEUROSCI, V12, P2079
[2]   REGIONAL AND LAMINAR DISTRIBUTION OF THE DOPAMINE AND SEROTONIN INNERVATION IN THE MACAQUE CEREBRAL-CORTEX - A AUTORADIOGRAPHIC STUDY [J].
BERGER, B ;
TROTTIER, S ;
VERNEY, C ;
GASPAR, P ;
ALVAREZ, C .
JOURNAL OF COMPARATIVE NEUROLOGY, 1988, 273 (01) :99-119
[3]   Brain regions responsive to novelty in the absence of awareness [J].
Berns, GS ;
Cohen, JD ;
Mintun, MA .
SCIENCE, 1997, 276 (5316) :1272-1275
[4]   Functional magnetic resonance imaging of brain reward circuitry in the human [J].
Breiter, HC ;
Rosen, BR .
ADVANCING FROM THE VENTRAL STRIATUM TO THE EXTENDED AMYGDALA: IMPLICATIONS FOR NEUROPSYCHIATRY AND DRUG ABUSE: IN HONOR OF LENNART HEIMER, 1999, 877 :523-547
[5]   Projections from the rat prefrontal cortex to the ventral tegmental area: Target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons [J].
Carr, DB ;
Sesack, SR .
JOURNAL OF NEUROSCIENCE, 2000, 20 (10) :3864-3873
[6]   NONLINEAR RELATIONSHIP BETWEEN IMPULSE FLOW, DOPAMINE RELEASE AND DOPAMINE ELIMINATION IN THE RAT-BRAIN IN-VIVO [J].
CHERGUI, K ;
SUAUDCHAGNY, MF ;
GONON, F .
NEUROSCIENCE, 1994, 62 (03) :641-645
[7]   L-type calcium channels modulate glutamate-driven bursting activity in the nucleus accumbens in vivo [J].
Cooper, DC ;
White, FJ .
BRAIN RESEARCH, 2000, 880 (1-2) :212-218
[8]   Associative processes in addiction and reward - The role of amygdala-ventral striatal subsystems [J].
Everitt, BJ ;
Parkinson, JA ;
Olmstead, MC ;
Arroyo, M ;
Robledo, P ;
Robbins, TW .
ADVANCING FROM THE VENTRAL STRIATUM TO THE EXTENDED AMYGDALA: IMPLICATIONS FOR NEUROPSYCHIATRY AND DRUG ABUSE: IN HONOR OF LENNART HEIMER, 1999, 877 :412-438
[9]  
Finch DM, 1996, HIPPOCAMPUS, V6, P495
[10]   Glutamatergic afferents from the hippocampus to the nucleus accumbens regulate activity of ventral tegmental area dopamine neurons [J].
Floresco, SB ;
Todd, CL ;
Grace, AA .
JOURNAL OF NEUROSCIENCE, 2001, 21 (13) :4915-4922