Iterative methods of solving stochastic convex feasibility problems and applications

被引:20
作者
Butnariu, D [1 ]
Iusem, AN
Burachik, RS
机构
[1] Univ Haifa, Dept Math, IL-31905 Haifa, Israel
[2] Ist Matemat Pura & Aplicada, BR-22460320 Rio De Janeiro, Brazil
[3] Pontificia Univ Catolica Rio de Janeiro, Dept Matemat, BR-22453030 Rio De Janeiro, Brazil
基金
以色列科学基金会;
关键词
stochastic convex feasibility problem; Bregman projection; Bregman function; modulus of convexity; local moduli of convexity; very convex function; totally convex function; regularly convex function; Bochner integral;
D O I
10.1023/A:1008795702124
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The stochastic convex feasibility problem (SCFP) is the problem of finding almost common points of measurable families of closed convex subsets in reflexive and separable Banach spaces. In this paper we prove convergence criteria for two iterative algorithms devised to solve SCFPs. To do that, we first analyze the concepts of Bregman projection and Bregman function with emphasis on the properties of their local moduli of convexity. The areas of applicability of the algorithms we present include optimization problems, linear operator equations, inverse problems, etc., which can be represented as SCFPs and solved as such. Examples showing how these algorithms can be implemented are also given.
引用
收藏
页码:269 / 307
页数:39
相关论文
共 32 条
[1]   Convergence of Bregman projection methods for solving consistent convex feasibility problems in reflexive Banach spaces [J].
Alber, Y ;
Butnariu, D .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1997, 92 (01) :33-61
[2]  
ALBER Y, 1993, FUNCTIONAL DIFFERENT, P1
[3]  
[Anonymous], 1976, P S PURE MATH 2
[4]  
[Anonymous], 1978, VESTNIK MOSKOV U SER
[5]  
Aubin J. P., 1990, Set-valued analysis, DOI 10.1007/978-0-8176-4848-0
[6]  
Bauschke H. H., 1997, J CONVEX ANAL, V4, P27
[7]   Projection algorithms for solving convex feasibility problems [J].
Bauschke, HH ;
Borwein, JM .
SIAM REVIEW, 1996, 38 (03) :367-426
[8]  
Bregman LM, 1967, USSR Computational Mathematics and Mathematical Physics, V7, P200
[9]  
Brezis H., 1983, ANAL FONCTIONELLE TH
[10]  
Burachik R. S., 1995, THESIS I MATEMATICA