The time development operators for Wigner functions of harmonic oscillators with quadratic Hamiltonians

被引:8
作者
BenAryeh, Y
Zoubi, H
机构
[1] JILA, University of Colorado, Boulder
[2] Department of Physics, Technion-Israel Inst. of Technology, Haifa
来源
QUANTUM AND SEMICLASSICAL OPTICS | 1996年 / 8卷 / 06期
关键词
D O I
10.1088/1355-5111/8/6/001
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Analytical expressions for the time development operators for Wigner functions of harmonic oscillators with quadratic Hamiltonians are developed by the use of group theoretical methods.
引用
收藏
页码:1097 / 1101
页数:5
相关论文
共 12 条
[1]   THE EVOLUTION OPERATOR TECHNIQUE IN SOLVING THE SCHRODINGER-EQUATION, AND ITS APPLICATION TO DISENTANGLING EXPONENTIAL OPERATORS AND SOLVING THE PROBLEM OF A MASS-VARYING HARMONIC-OSCILLATOR [J].
CHENG, CM ;
FUNG, PCW .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (22) :4115-4131
[2]   LINEAR CANONICAL-TRANSFORMATIONS OF COHERENT AND SQUEEZED STATES IN THE WIGNER PHASE-SPACE [J].
HAN, D ;
KIM, YS ;
NOZ, ME .
PHYSICAL REVIEW A, 1988, 37 (03) :807-814
[3]  
HILLERY M, 1984, PHYS REP, V106, P122
[4]  
Ince E., 1956, Ordinary Differential Equations
[5]   HARMONIC-OSCILLATOR WITH VARIABLE MASS [J].
LEACH, PGL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (14) :3261-3269
[6]   SQUEEZING IN HARMONIC-OSCILLATOR WITH TIME-DEPENDENT MASS AND FREQUENCY [J].
LO, CF .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1990, 105 (05) :497-506
[7]   COHERENT-STATE PROPAGATOR OF THE GENERALIZED TIME-DEPENDENT PARAMETRIC OSCILLATOR [J].
LO, CF .
EUROPHYSICS LETTERS, 1993, 24 (05) :319-323
[8]   GENERATING DISPLACED AND SQUEEZED NUMBER STATES BY A GENERAL DRIVEN TIME-DEPENDENT OSCILLATOR [J].
LO, CF .
PHYSICAL REVIEW A, 1991, 43 (01) :404-409
[9]   AREA OF OVERLAP AND INTERFERENCE IN PHASE-SPACE VERSUS WIGNER PSEUDOPROBABILITIES [J].
SCHLEICH, W ;
WALLS, DF ;
WHEELER, JA .
PHYSICAL REVIEW A, 1988, 38 (03) :1177-1186
[10]  
YUEN HP, 1976, PHYS REV A, V13, P2226, DOI 10.1103/PhysRevA.13.2226