Theory-based Bayesian models of inductive learning and reasoning

被引:452
作者
Tenenbaum, Joshua B.
Griffiths, Thomas L.
Kemp, Charles
机构
[1] MIT, Dept Brain & Cognit Sci, Cambridge, MA 02139 USA
[2] Brown Univ, Dept Cognit & Linguist Sci, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.tics.2006.05.009
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
Inductive inference allows humans to make powerful generalizations from sparse data when learning about word meanings, unobserved properties, causal relationships, and many other aspects of the world. Traditional accounts of induction emphasize either the power of statistical learning, or the importance of strong constraints from structured domain knowledge, intuitive theories or schemas. We argue that both components are necessary to explain the nature, use and acquisition of human knowledge, and we introduce a theory-based Bayesian framework for modeling inductive learning and reasoning as statistical inferences over structured knowledge representations.
引用
收藏
页码:309 / 318
页数:10
相关论文
共 70 条
  • [1] AHN W, 2000, EXPLANATION COGNITIO, P199
  • [2] Anderson JR, 1990, ADAPTIVE CHARACTER T
  • [3] [Anonymous], 1999, Simple heuristics that make us smart
  • [4] Folk biology and the anthropology of science: Cognitive universals and cultural particulars
    Atran, S
    [J]. BEHAVIORAL AND BRAIN SCIENCES, 1998, 21 (04) : 547 - +
  • [5] BLOK S, 2003, 2003 AAAI SPRING S L, P43
  • [6] Bloom P., 2002, CHILDREN LEARN MEANI
  • [7] Bruner J.S., 1986, A study of thinking
  • [8] Carey S., 1985, CONCEPTUAL CHANGE CH
  • [9] CAREY S, 1985, NEONATE COGNITION, P381
  • [10] CHARTER N, 2006, TRENDS COGN SCI, DOI DOI 10.1016/J.TICS.2006.05.006